Two distinguishable gene groups detected: One 'normal' and one problematic

Researchers at the Hebrew University of Jerusalem and other institutions have identified two distinguishable groups of genes: those that produce very abundant biochemical products in the cell and function properly in the majority of biological processes, and a flexible subset that might have abnormal function in a disease.

They demonstrated that these two groups can be found among various organisms and cell types, including and .

One set of genes is a robust network that conducts the basic functions of all cells, such as producing energy and biochemical building blocks. This group represents the "hard core" of different organisms.

The biochemical products produced by the other group of genes are less abundant in organisms, and their amount might vary significantly between different types of normal and and even between different cancer cells derived from patients with the same type of cancer.

This dramatic variation between patients with the same disease has clear implications for personalized medicine. It implies that detailed analysis of each patient will be required in order to determine the exact type of patient-oriented therapy needed.

The work on defining the two gene sets was described in a recent article in the .

Related Stories

Structure relevant to cell growth

date Oct 22, 2005

Utah researchers found a special type of molecular structure that helps keep genes properly turned off until the structure is ejected.

How stem cells are regulated

date Feb 22, 2007

Researchers from Biotech Research & Innovation Centre (BRIC) at University of Copenhagen have identified a new group of proteins that regulate the function of stem cells. The results are published in the new issue of Cell.

Researchers demonstrate why DNA breaks down in cancer cells

date May 03, 2011

Damage to normal DNA is a hallmark of cancer cells. Although it had previously been known that damage to normal cells is caused by stress to their DNA replication when cancerous cells invade, the molecular basis for this ...

Recommended for you

Systematic interaction network filtering in biobanks

date Apr 24, 2015

While seeking targets to attack Huntington's disease, an incurable inherited neurodegenerative disorder, neurobiologists of the research group led by Professor Erich Wanker of the Max Delbrück Center for ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.