Fibroblasts reprogrammed into functioning heart cells in mice

April 23, 2012

(HealthDay) -- Cells that normally form scar tissue after a heart attack can be reprogrammed into functional heart cells in mice, according to an experimental study published online April 18 in Nature.

Noting that cardiac fibroblasts can be reprogrammed in vitro to become adult cardiomyocyte-like cells through the addition of the Gata4, Mef2c, and Tbx5 (GMT) genes, Li Qian, Ph.D., from the University of California in San Francisco, and colleagues examined whether this could also be done in vivo by adding these genes to cardiac non-myocytes (mostly fibroblasts) in the hearts of mice after coronary ligation.

The researchers found that, within a month, the induced cells resembled cardiomyocytes: they became binucleate, assembled sarcomeres, and had gene-expression similar to cardiomyocytes. On single-cell analysis, ventricular like those of cardiomyocytes were noted, as were beating after electrical stimulation and evidence of electrical coupling. Up to three months after coronary ligation, infarct size was reduced and improved following in vivo delivery of GMT. Delivery of thymosin beta-4, a pro-angiogenic and fibroblast-activating peptide, led to further improvements in scar area and cardiac function.

"These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes," Qian and colleagues conclude.

One author is a member of the scientific advisory boards for iPierian Inc. and RegeneRx Biopharmaceuticals.

Explore further: Transforming scar tissue into beating hearts: The next instalment

More information: Abstract
Full Text (subscription or payment may be required)

Related Stories

Recommended for you

Flu study, on hold, yields new vaccine technology

September 2, 2015

Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison in the ...

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.