Gauging seizures' severity

April 26, 2012 by Larry Hardesty
This low-profile wrist sensor, designed by MIT professor Rosalind Picard and her group, has shown early evidence that it can gauge the severity of epileptic seizures as accurately as scalp-worn electroencephalograms EEGs (shown at right). Image: M. Scott Brauer

In this week's issue of the journal Neurology, researchers at MIT and two Boston hospitals provide early evidence that a simple, unobtrusive wrist sensor could gauge the severity of epileptic seizures as accurately as electroencephalograms (EEGs) do — but without the ungainly scalp electrodes and electrical leads. The device could make it possible to collect clinically useful data from epilepsy patients as they go about their daily lives, rather than requiring them to come to the hospital for observation. And if early results are borne out, it could even alert patients when their seizures are severe enough that they need to seek immediate medical attention.

Rosalind Picard, a professor of media arts and sciences at MIT, and her group originally designed the to gauge the emotional states of children with autism, whose outward behavior can be at odds with what they're feeling. The sensor measures the electrical conductance of the skin, an indicator of the state of the sympathetic nervous system, which controls the human fight-or-flight response.

In a study conducted at Children's Boston, the research team — Picard, her student Ming-Zher Poh, neurologist Tobias Loddenkemper and four colleagues from MIT, Children's Hospital and Brigham and Women's Hospital — discovered that the higher a patient's skin conductance during a seizure, the longer it took for the patient's brain to resume the neural oscillations known as brain waves, which EEG measures.

At least one clinical study has shown a correlation between the duration of brain-wave suppression after seizures and the incidence of sudden unexplained death in epilepsy (SUDEP), a condition that claims thousands of lives each year in the United States alone. With SUDEP, death can occur hours after a seizure.

Currently, patients might use a range of criteria to determine whether a seizure is severe enough to warrant immediate medical attention. One of them is duration. But during the study at Children's Hospital, Picard says, "what we found was that this severity measure had nothing to do with the length of the seizure." Ultimately, data from wrist sensors could provide crucial information to patients deciding whether to roll over and go back to sleep or get to the emergency room.

Surprising signals

The realization that the wrist sensors might be of use in treating epilepsy was something of a fluke. "We'd been working with kids on the autism spectrum, and I didn't realize, but a lot of them have seizures," Picard says. In reviewing data from their autism studies, Picard and her group found that seizures were sometimes preceded by huge spikes in skin conductance. It seemed that their sensors might actually be able to predict the onset of seizures.

At the time, several MIT students were working in Picard's lab through MIT's Undergraduate Research Opportunities Program (UROP); one of them happened to be the daughter of Joseph Madsen, director of the Epilepsy Surgery Program at Children's Hospital. "I decided it was time to meet my UROP's dad," Picard says.

In a project that would serve as the basis of Poh's doctoral dissertation, Madsen agreed to let the MIT researchers test the sensors on patients with severe epilepsy, who were in the hospital for as much as a week of constant EEG monitoring. Poh and Picard considered several off-the-shelf sensors for the project, but "at the time, there was nothing we could buy that did what we needed," Picard says. "Finally, we just built our own."

"It's a big challenge to make a device robust enough to withstand long hours of recording," Poh says. "We were recording days or weeks in a row." In early versions of the sensors, some fairly common gestures could produce false signals. Eliminating the sensors' susceptibility to such sources of noise was largely a process of trial and error, Picard says.

Blending in

Additionally, Poh says, "I put a lot of thought into how to make it really comfortable and as nonintrusive as possible. So I packaged it all into typical sweatbands." Since the patients in the study were children, "I allowed them to choose their favorite character on their wristband — for example, Superman, or Dora the Explorer, whatever they like," Poh says. "To them, they were wearing a wristband. But there was a lot of complicated sensing going on inside the wristband." Indeed, Picard says, the researchers actually lost five of their homemade sensors because hospital cleaning staff saw what they thought were ratty sweatbands lying around recently vacated rooms and simply threw them out.

Picard is continuing to investigate the possibility that initially intrigued her — that the devices could predict seizures. In the meantime, however, her collaborators at Children's Hospital are conducting a study that will follow up on the one reported in Neurology, and a similar study is beginning at Brigham and Women's Hospital. Rather than sweatbands with TV and comic-book characters, however, the new studies will use sensors produced by Affectiva, a company that Picard started in order to commercialize her lab's work.

Explore further: Expert calls for awareness, research of sudden death in patients with epilepsy

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.