Gene variations linked to intestinal blockage in newborns with cystic fibrosis

April 1, 2012

University of North Carolina at Chapel Hill researchers working as part of the International Cystic Fibrosis Consortium have discovered several regions of the genome that may predispose cystic fibrosis (CF) patients to develop an intestinal blockage while still in the uterus.

A report of this international study appears online April 1, 2012 in the journal Nature Genetics. It was the work of the North America CF Gene Modifier Consortium, which brought together dozens of investigators from the United States, Canada, and from France, to identify genetic variations that could be linked with meconium ileus (MI), an intestinal obstruction that usually requires for treatment, and can result in a substantially increased rate of serious health problems.

MI affects roughly 15-20 percent of all patients with CF, a that causes scarring throughout the body, especially the lungs and . Though every CF patient carries mutations in both copies of the same gene – coding for a protein called transmembrane conductance regulator, or CFTR – symptoms can vary widely from patient to patient.

The genome-wide association study (GWAS) of more than 3,700 identified non-CFTR genetic variants in the cell membrane that separates the interior of cells from the outside environment. More specifically, the variants involved genes responsible for ion transport in the lower end of the small intestine.

"These variants involve cells in the small intestine that predispose CF patients to develop MI while still in the womb," said one of the senior study authors Michael Knowles, MD, professor of pulmonary and critical care medicine at UNC and a member of UNC's Cystic Fibrosis-Pulmonary Research and Treatment Center.

"The discovery provides new understanding of the pathogenic mechanisms underlying MI. In addition, it offers the possibility of developing therapies to intervene in utero," Knowles said. "Further, it provides molecular insight into the role of in ion transporters in CF, which may be applicable to more commonly, and severely, involved organs such as the lungs."

Explore further: Secondhand smoke exposure is linked to worsening of lung function for persons with cystic fibrosis

Related Stories

Mucous breakthrough in mice holds promise for cystic fibrosis

July 29, 2008

A London, Canada scientist studying cystic fibrosis (CF) has successfully corrected the defect which causes the overproduction of intestinal mucous in mice. This discovery by Dr. Richard Rozmahel, a scientist with the Lawson ...

Unraveling a new regulator of cystic fibrosis

September 19, 2011

Cystic fibrosis (CF), a chronic disease that clogs the lungs and leads to life-threatening lung infections, is caused by a genetic defect in a chloride channel called cystic fibrosis transmembrane conductase regulator (CFTR). ...

Recommended for you

Solving the mystery of meningiomas reveals a surprise twist

August 23, 2016

In solving one mystery—the genetic roots of benign brain tumors called meningiomas—a team of scientists led by Yale researchers stumbled upon an even greater one: How is it possible that two of the mutations linked to ...

Two key proteins preserve vital genetic information

August 22, 2016

Cancer is often driven by various genetic mutations that are acquired through changes to a person's DNA over time. These alterations can occur at the chromosome level if the proteins are not properly organized and segregated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.