Novel genetic loci identified for high-frequency hearing loss

The genetics responsible for frequency-specific hearing loss have remained elusive until recently, when genetic loci were found that affected high-frequency hearing. Now, a study published today in the open access journal BMC Genetics reports, for the first time, genetic loci with effects that are limited to specific portions of the hearing frequency map, particularly those that are most affected in ageing-related hearing loss.

Presbycusis is the loss of hearing for high-pitched sounds that gradually occurs in most individuals as they grow older. Although many loci have been linked to hearing deficits in humans, many loci that contribute to tonotopy, i.e. the organization of the that permits detection and discrimination of sounds of different frequency, remain undiscovered.

A group from the National Institute on and Other Communication Disorders (NIDCD) at the National Institutes of Health (NIH), used genome-wide linkage analysis in NIH Swiss mice to successfully identify two quantitative trait loci that affect hearing at – Hfhl1 and Hfhl3. Specifically the effect of the locus Hfhl1 is thought to be confined to hearing frequencies from 25-44kHz of the tonotopic map, whilst Hfhl3 is restricted to the 35-44kHz region.

Lead author James M Keller commented, "Our results support the hypothesis that frequency-specific hearing loss results from variation in gene activity along the cochlear partition and suggest a strategy for creating a map of genes that influence differences in hearing sensitivity and or vulnerability in restricted portions of the cochlea."

He continued, "The high-frequency hearing loss loci, Hfhl1 and Hfhl3, explain only a portion of the variation in high-frequency observed in these mice. Other loci, and cross talk between genes at different loci, probably account for much of the remainder - in fact we detected a number of additional loci that could account for some of the residual variation. Additional genotyping and analysis could greatly increase our understanding of the genetic architecture of the HFHL phenotype."

More information: Genome-wide linkage analyses identify Hfhl1 and Hfhl3 with frequency-specific effects on the hearing spectrum of NIH Swiss mice James M Keller and Konrad Noben-Trauth BMC Genetics (in press)

add to favorites email to friend print save as pdf

Related Stories

Genes influence age-related hearing loss

Nov 14, 2007

A new Brandeis University study of twins shows that genes play a significant role in the level of hearing loss that often appears in late middle age. The research, in the Journal of Gerontology: Medical Sciences, examined geneti ...

Study examines prevalence of hearing loss in the US

Jul 28, 2008

Hearing loss may be more prevalent in American adults than previously reported, according to a study in the July 28 issue of Archives of Internal Medicine, one of the JAMA/Archives journals.

Can you hear me now? Stem cells enhance hearing recovery

Jun 25, 2007

Tokyo, Japan -- Researchers have shown that bone marrow stem cells injected into a damaged inner ear can speed hearing recovery after partial hearing loss. The related report by Kamiya et al, “Mesenchymal stem cell transplantation ...

Hearing loss linked with dental tools

Aug 15, 2006

U.S. scientists at the Oregon Health and Science University are exploring a possible link between high speed dental tools and dentists' hearing loss.

Recommended for you

A nucleotide change could initiate fragile X syndrome

13 hours ago

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

Mutation disables innate immune system

Aug 29, 2014

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

User comments