Study shows halting an enzyme can slow multiple sclerosis in mice

Researchers studying multiple sclerosis(MS) have long been looking for the specific molecules in the body that cause lesions in myelin, the fatty, insulating cells that sheathe the nerves. Nearly a decade ago, a group at Mayo Clinic found a new enzyme, called Kallikrein 6, that is present in abundance in MS lesions and blood samples and is associated with inflammation and demyelination in other neurodegenerative diseases. In a study published this month in Brain Pathology, the same group found that an antibody that neutralizes Kallikrein 6 is capable of staving off MS in mice.

"We were able to slow the course of disease through early chronic stages, both in the brain and spinal cord," says lead author Isobel Scarisbrick, Ph.D.,of the Mayo Clinic Department of Physical Medicine and Rehabilitation.

Researchers looked at mice representing a viral model of MS. The model is based on the theory that infection with viral infection early in life results in an eventual abnormal immune response in the brain and spinal cord. One week after being infected with a virus, the mice showed elevated levels of Kallikrein 6 enzyme in the brain and spinal cord. However, when researchers treated mice to produce an antibody capable of blocking and neutralizing the enzyme, they saw a decrease in diseases effecting the brain and spinal cord, including demyelination. The Kallikrein 6 neutralizing antibody had reduced inflammatory and slowed the depletion of myelin basic protein, a key component of the .

The findings in the MS model have implications for other conditions affecting the brain and spinal cord. The group has previously shown that the Kallikrein 6 enzyme, produced by immune cells, is elevated in spinal cord injury, while other studies have shown it to be elevated in animal models of stroke and patients with post-polio syndrome.

"These findings suggest Kallikrein 6 plays a role in the inflammatory and demyelinating processes that accompany many types of neurological conditions," says Dr. Scarisbrick. "In the early chronic stages of some neurological diseases, Kallikrein 6 may represent a good molecule to target with drugs capable of neutralizing its effects."

Related Stories

Multiple sclerosis: Damaged myelin not the trigger

Feb 27, 2012

Damaged myelin in the brain and spinal cord does not cause the autoimmune disease multiple sclerosis (MS), neuroimmunologists from the University of Zurich have now demonstrated in collaboration with researchers from Berlin, ...

Recommended for you

A better biomonitor for children with asthma

Dec 10, 2014

For the firefighters and rescue workers conducting the rescue and cleanup operations at Ground Zero from September 2001 to May 2002, exposure to hazardous airborne particles led to a disturbing "WTC cough"—obstructed ...

New insight into risk of Ankylosing Spondylitis

Dec 09, 2014

Scientists at the University of Southampton have discovered variations in an enzyme belonging to the immune system that leaves individuals susceptible to Ankylosing Spondylitis.

Novel approach to treating asthma: Neutralize the trigger

Dec 03, 2014

Current asthma treatments can alleviate wheezing, coughing and other symptoms felt by millions of Americans every year, but they don't get to the root cause of the condition. Now, for the first time, scientists ...

Inflammatory discovery sheds new light on skin disease

Dec 02, 2014

Inflammatory skin diseases such as psoriasis may result from abnormal activation of cell death pathways previously believed to suppress inflammation, a surprise finding that could help to develop new ways ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.