MRSA tailors virulence mechanisms to the hospital setting

April 25, 2012

(Medical Xpress) -- In the hospital environment where antibiotic usage is extremely high, it seems that healthcare associated methicillin resistant Staphylococcus aureus (MRSA) has cleverly adapted for survival.

The findings of new research by UCD scientists led by Conway Fellow, Dr Jim O’Gara from UCD School of Biomolecular & Biomedical Science indicate that the so-called ‘super-bug’, MRSA sacrifices virulence potential for antibiotic resistance.

When the pathogen Staphylococcus aureus becomes resistant to methicillin, it also alters the way in which it produces a biofilm. This coating by colonies of the pathogen can form on prosthetic devices implanted in patients for diagnostic or therapeutic reasons and cause infection.

Patients with implanted devices are typically in an intensive care setting in hospital and have lowered immunity. They are more susceptible to infection even from a less virulent MRSA.

Describing the study that was published earlier this month in PLoS Pathogens, Dr O’Gara said, “We introduced a methicillin resistance gene into pre-clinical isolates of S. aureus in the laboratory to produce a high level resistant form of the pathogen.

We worked with Professor Brendan Loftus in the UCD Conway Genomics Core to identify the genetic changes in this modified strain of the pathogen using whole genome sequencing. These genetic changes led to biofilm development being mediated through an alternate pathway while also causing significantly reduced virulence in a murine model of device infection.”

The findings indicate that has honed its arsenal of virulence mechanisms to suit the hospital environment favouring antibiotic resistant over virulence while retaining its biofilm forming capacity and using implanted medical devices in immune-compromised patients as the optimum route to infection.

Device associated infections are difficult to treat and also necessitate the removal of the device, which in itself is not a trivial procedure for the patient. Understanding the ways by which biofilms are produced is the initial challenge to developing therapeutics to treat staphylococcal biofilm infections.

This research funded the Health Research Board, IRCSET and Healthcare Infection Society (UK) was carried out in collaboration with research groups in the University of Bath, University of Nebraska Medical Centre and Harvard Medical School.

Explore further: Evolution of virulence regulation in Staphylococcus aureus

Related Stories

Evolution of virulence regulation in Staphylococcus aureus

October 9, 2008

Scientists have gained insight into the complex mechanisms that control bacterial pathogenesis and, as a result, have developed new theories about how independent mechanisms may have become intertwined during evolution. The ...

Researchers find link to severe Staph infections

December 23, 2008

Researchers at The University of Texas School of Public Health recently described studies that support the link between the severity of community-acquired antibiotic-resistant Staphylococcus aureus (CA MRSA) infections and ...

MRSA head and neck infections increase among children

January 19, 2009

Rates of antibiotic-resistant head and neck infections increased in pediatric patients nationwide between 2001 and 2006, according to a report in the January issue of Archives of Otolaryngology-Head & Neck Surgery, one of ...

Blue light destroys antibiotic-resistant staph infection

January 29, 2009

Two common strains of methicillin-resistant Staphylococcus aureus, commonly known as MRSA, were virtually eradicated in the laboratory by exposing them to a wavelength of blue light, in a process called photo-irradiation ...

Recommended for you

Team makes Zika drug breakthrough

August 29, 2016

A team of researchers from Florida State University, Johns Hopkins University and the National Institutes of Health has found existing drug compounds that can both stop Zika from replicating in the body and from damaging ...

Zika virus may persist in the vagina days after infection

August 25, 2016

The Zika virus reproduces in the vaginal tissue of pregnant mice several days after infection, according to a study by Yale researchers. From the genitals, the virus spreads and infects the fetal brain, impairing fetal development. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.