Neuroscientists discover key protein responsible for controlling nerve cell protection

April 22, 2012

A key protein, which may be activated to protect nerve cells from damage during heart failure or epileptic seizure, has been found to regulate the transfer of information between nerve cells in the brain. The discovery, made by neuroscientists at the University of Bristol and published in Nature Neuroscience and PNAS, could lead to novel new therapies for stroke and epilepsy.

The research team, led by Professor Jeremy Henley and Dr Jack Mellor from Bristol's Medical School, has identified a protein, known as SUMO, responsible for controlling the chemical processes which reduce or enhance protection mechanisms for in the brain.

These key SUMO proteins produce subtle responses to the brain's activity levels to regulate the amount of information transmitted by kainate receptors - responsible for communication between nerve cells and whose activation can lead to and nerve cell death.

is controlled by altering their structure in processes that can be independent or inter-related including phosphorylation, ubiquitination and SUMOylation. In the present work it is shown that phosphorylation of kainate receptors on its own promotes their activity. However, phosphorylation also facilitates SUMOylation of kainate receptors that reduces their activity. Thus there is a dynamic and delicate interplay between phosphorylation and SUMOylation that regulates kainate receptor function.

This fine balance between phosphorylation and SUMOylation is dependent on levels where damaging activity that occurs during stroke or epilepsy will enhance SUMOylation and therefore reduce kainate to protect nerve cells.

Dr Mellor, Senior Lecturer from the University's School of Physiology and Pharmacology, said: "Kainate receptors are a somewhat mysterious but clearly very important group of proteins that are known to be involved in a number of diseases including epilepsy. However, we currently know little about what makes kainate receptors so important. Likewise, we also know that SUMO proteins play an important role in neuroprotection. These findings provide a link between SUMO and kainate receptors that increases our understanding of the processes that nerve cells use to protect themselves from excessive and abnormal activity."

Professor Henley added: "This work is important because it gives a new perspective and a deeper understanding of how the flow of information between cells in the brain is regulated. The team has found that by increasing the amount of SUMO attached to kainate receptors – which would reduce communication between the cells – could be a way to treat epilepsy by preventing over-excitation of the brain's nerve cells."

The research follows on from previous findings published in Nature(447, 321-325) that discovered SUMO proteins target the brain's kainate receptors altering their cellular location.

Explore further: New research reveals brain's protection mechanism during stroke

Related Stories

Recommended for you

Motivation to bully is regulated by brain reward circuits

June 29, 2016

Individual differences in the motivation to engage in or to avoid aggressive social interaction (bullying) are mediated by the basal forebrain, lateral habenula circuit in the brain, according to a study conducted at the ...

New clues about the aging brain's memory functions

June 29, 2016

A European study led by Umeå University Professor Lars Nyberg, has shown that the dopamine D2 receptor is linked to the long-term episodic memory, which function often reduces with age and due to dementia. This new insight ...

New technology could deliver drugs to brain injuries

June 28, 2016

A new study led by scientists at the Sanford Burnham Prebys Medical Discovery Institute (SBP) describes a technology that could lead to new therapeutics for traumatic brain injuries. The discovery, published today in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.