Taking it all in: Revealing how we sense things

April 25, 2012 By Allison Flynn

McGill physiology research team sheds light on how the brain processes what we sense.

We rely on our senses in all aspects of our lives. Unfortunately, many people suffer from some kind of impaired sensory function. In Canada alone, 600,000 people are visually impaired while almost three million suffer from partial or total . In a paper published this week in The Journal of Neuroscience, researchers from McGill University have demonstrated for the first time that there are specific neurons that respond selectively to first and second order sensory attributes. In the visual system, for example, luminance is a first-order attribute, whereas contrast is second-order. These findings could pave the way to the development of novel therapies and improved for those with sensory deficiencies.

The research team, led by physiology student Patrick McGillivray, recorded the responses to stimuli of midbrain electro-sensory neurons in the weakly electric fish. Based on these responses, the researchers were able to demonstrate that there are specific neurons that respond selectively to different attributes at the same time. Moreover, they uncovered the simple and generic that enable this selectivity. These findings provide important clues about how the brain processes first and second order sensory attributes in audition (like pitch and timbre) and vision (like luminance and contrast).

"Uncovering these clues relies on identifying the attributes that we use to perceive stimuli, the computations performed by the brain, and the actual neural networks that implement these," explained Dr. Maurice Chacron, lead author and principal investigator at McGill's Computational Systems Neuroscience Lab. " like speech and music are characterized by multiple attributes. For example, when listening to music, we can perceive both frequency (how low or high an instrument is playing), as well as timbre (the type of instrument playing)."

Explore further: For hearing parts of brain, deafness reorganizes sensory inputs, not behavioral function

Related Stories

Recommended for you

Fish courtship pheromone uses the brain's smell pathway

May 30, 2016

Research at the RIKEN Brain Science Institute in Japan has revealed that a molecule involved in fish reproduction activates the brain via the nose. The pheromone is released by female zebrafish and sensed by smell receptors ...

Neuroscientists illuminate role of autism-linked gene

May 25, 2016

A new study from MIT neuroscientists reveals that a gene mutation associated with autism plays a critical role in the formation and maturation of synapses—the connections that allow neurons to communicate with each other.

Teen brains facilitate recovery from traumatic memories

May 25, 2016

Unique connections in the adolescent brain make it possible to easily diminish fear memories and avoid anxiety later in life, according to a new study by Weill Cornell Medicine researchers. The findings may have important ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.