Research reveals development of the glial cell

A vast majority of cells in the brain are glial, yet our understanding of how they are generated, a process called gliogenesis, has remained enigmatic. Researchers at Baylor College of Medicine have identified a novel transcripitonal cascade that controls these formative stages of gliogenesis and answered the longstanding question of how glial cells are generated from neural stem cells.

The findings appear in the current edition of Neuron.

"Most people are familiar with neurons, cells that process and transmit information in the brain. , on the other hand, make-up about 80 percent of the cells in the brain and function by providing trophic support to neruons, participating in neurotransmission, for , and comprise the ," said Dr. Benjamin Deneen, assistant professor of neuroscience at BCM. "Importantly, glia have been linked to numerous CNS pathologies, from brain tumors and spinal cord injury and several neurological disorders including, Retts Syndrome, ALS, and Multiple Sclerosis. Therefore deciphering how glial cells are generated is key to understanding during health and disease."

As researchers began investigating glial development in chicks they started by going backwards – examing what steps were needed before the glial cells matured. They discovered that are specified in when the transcription factor NFIA is induced.

Taking another step back in the transcriptional cascade, they looked for what triggered NFIA induction.

"By comparing mouse and chick regulatory sequences we were able to perform enhancer screening in the chick to identify regulatory elements with activity that resembled NFIA induction. This method allowed us to pinpoint Sox9," said Peng Kang, postdoctoral associate in the Center for Stem Cell and Regenerative Medicine at BCM. "Subsequently, we found that Sox9 doesn't just induce NFIA expression, it also associates with NFIA, forming a complex."

Just after the initiation of gliogenesis this complex was discovered to co-regulate a subset of genes that play important roles in mitochondria energy metabolism and glial precursor migration.

"Sox9 induces NFIA expression during glial initiation and then binds NFIA to drive lineage progression by cooperatively regulating a genetic program that controls cell migration and energy metabolism, two key processes associated with cellular differentiation," said Deneen. "We now need to ask what other proteins contribute to this process, and how does the nature of this complex evolve during astro-glial lineage progression."

Additionally, these findings may also help researchers to understand how certain brain tumors might begin to form, as these same developmental processes and proteins are found in both adult and pediatric . A more comprehensive understanding how this regulatory cascade operates during development, could eventually lead to better treatment targets for .

Related Stories

Milestone in the regeneration of brain cells

Aug 20, 2007

The majority of cells in the human brain are not nerve cells but star-shaped glia cells, the so called “astroglia”. “Glia means “glue”, explains Götz. “As befits their name, until now these cells have been regarded ...

Scientists Discover Brain's Guardian Protein

Jul 26, 2010

Hopkins scientists who have spent years killing off brain cells to figure out why and how they die now say their investigations have also shed light on how the brain defends itself.

Recommended for you

Emotional adjustment following traumatic brain injury

Oct 24, 2014

Life after a traumatic brain injury resulting from a car accident, a bad fall or a neurodegenerative disease changes a person forever. But the injury doesn't solely affect the survivor – the lives of their spouse or partner ...

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

User comments