Scientists find Achilles' heel in life-threatening malaria parasites

Scientists have identified a link between different strains of malaria parasites that cause severe disease, which could help develop vaccines or drugs against life-threatening cases of the infection.

Researchers have identified a key protein that is common to many potentially fatal forms of the condition, and found that antibodies that targeted this protein were effective against these severe malaria strains.

The protein has sticky properties that enable it to bind to and form dangerous that can block . These clumps, or rosettes, can cause severe illness, including coma and . Presently, between 10 and 20 per cent of people with severe malaria die from it, and the disease – which is spread by blood-sucking mosquitoes – claims about one million lives per year.

Malaria parasites, once in the bloodstream, are able to alter the protein molecules on their surfaces to evade attack by the immune system. These surface proteins are usually poor targets for treatments or vaccines because they are highly variable between different strains. Now, researchers have found that the surface proteins of rosette-forming parasites share similarities that may allow them to act as a target for treatments to block progress of the disease.

Scientists from the University of Edinburgh worked with collaborators from Cameroon, Mali, Kenya and The Gambia to test their antibodies against parasites collected from patients. The study, published in PLoS Pathogens, was supported by the Wellcome Trust.

Professor Alexandra Rowe of the University of Edinburgh's School of Biological Sciences, who led the study, said: "We knew that clusters, or rosettes, of blood cells were found in many cases of severe or life-threatening malaria, so we looked at rosette-forming parasites and found a common factor that we could target with . We hope this discovery will inform new treatments or vaccines to block the formation of rosettes and so prevent many life-threatening cases of malaria."

Provided by University of Edinburgh

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

How adhesive protein causes malaria

Sep 25, 2007

Researchers at the Swedish medical university Karolinska Institutet (KI) and the Swedish Institute for Infectious Disease Control (SMI) have identified the biochemical mechanism behind the adhesive protein that give rise ...

Recommended for you

Team untangles the biological effects of blue light

4 hours ago

Blue light can both set the mood and set in motion important biological responses. Researchers at the University of Pennsylvania's School of Medicine and School of Arts and Sciences have teased apart the ...

Mouse model provides new insight in to preeclampsia

5 hours ago

Worldwide, preeclampsia is a leading cause of maternal deaths and preterm births. This serious pregnancy complication results in extremely high blood pressure and organ damage. The onset of preeclampsia is associated with ...

Scientists unravel the mystery of a rare sweating disorder

5 hours ago

An international research team discovered that mutation of a single gene blocks sweat production, a dangerous condition due to an increased risk of hyperthermia, also known as heatstroke. The gene, ITPR2, controls a basic ...

User comments