Scientists discover enzyme that could slow part of the aging process in astronauts -- and the elderly

New research published online in the FASEB Journal suggests that a specific enzyme, called 5-lipoxygenase, plays a key role in cell death induced by microgravity environments, and that inhibiting this enzyme will likely help prevent or lessen the severity of immune problems in astronauts caused by spaceflight. Additionally, since space conditions initiate health problems that mimic the aging process on Earth, this discovery may also lead to therapeutics that extend lives by bolstering the immune systems of the elderly.

"The outcomes of this space research might be helpful to improve health in the elderly on Earth," said Mauro Maccarrone, Ph.D., a researcher involved in the work from the Department of Biomedical Sciences at the University of Teramo in Teramo, Italy. "In fact, space conditions [cause problems that] resemble the physiological process of aging and drugs able to reduce microgravity-induced immunodepression might be effective therapeutics against loss of immune performance in aging people. 5-lipoxygenase inhibitors, already used to curb human , may be such a group of compounds."

Maccarone and colleagues made this discovery by conducting experiments involving two groups of human lymphocytes that were isolated from the blood of two healthy donors. The first group of lymphocytes was exposed to microgravity onboard the (ISS). The second group was put in a onboard the ISS, to have the same "" as the other group, but a normal Earth-like force of gravity. When programmed (apoptosis) was measured in both groups, the lymphocytes exposed to microgravity showed an increase above what is considered "normal." The group exposed to the simulated Earth gravity showed no unusual differences. Specifically, the researchers believe that this difference is caused by different levels of the 5-lipoxygenase enzyme.

"It's no surprise that bodies need Earth's gravity to function properly," said Gerald Weissmann, M.D., Editor-in-Chief of the , "because we evolved to survive on this planet. As humanity moves into space and potentially to other planets or asteroids, it's clear that we need know how not only to secure habitable conditions, but also how to secure our health. Fortunately, as we learn how to cope with low gravity environments, we also unlock secrets to longevity back home on Earth."

More information: FASEB J May 2012 26:1791-1798; doi:10.1096/fj.11-199406

Related Stories

NASA Send Cells Into Space

Apr 02, 2010

(PhysOrg.com) -- NASA scientists are sending three fundamental life science experiments onboard space shuttle Discovery in hopes of better understanding exactly how spaceflight affects cell growth and how cells fight off ...

How does microgravity affect astronauts?

Aug 04, 2011

Anyone over 40 knows firsthand the effects of gravity's constant downward pull on our faces and bodies. It is an immutable force that Einstein called a “curvature of space-time” -- but the curvature ...

Recommended for you

Gene therapy protects mice from heart condition

Aug 20, 2014

A new gene therapy developed by researchers at the University of Missouri School of Medicine has been shown to protect mice from a life-threatening heart condition caused by muscular dystrophy.

Study finds crucial step in DNA repair

Aug 18, 2014

Scientists at Washington State University have identified a crucial step in DNA repair that could lead to targeted gene therapy for hereditary diseases such as "children of the moon" and a common form of ...

User comments