Scientists find that neurological changes can happen due to social status

Researchers at Georgia State University have discovered that in one species of freshwater crustaceans, social status can affect the configuration of neural circuitry.

They found that dominant and subordinate crayfish differ in their when touched unexpectedly, and that those differences correlate with differences in neural circuits that mediate those responses.

The article was published this week in the . The research team included Edwards, Fadi A. Issa and Joanne Drummond of Georgia State, and Daniel Cattaert of the Centre de Neurosciences Integratives et Cognitives of the Universities of Bordeaux 1 and 2.

When dominant crayfish are touched unexpectedly, they tend to raise their claws, while subordinate animals drop in place and scoot backwards, said Donald Edwards, Regents' Professor of neuroscience at Georgia State.

In looking at the nervous systems of the animals, the researchers noticed differences in how neurons were excited to produce different reactions to being touched when the animals' behavioral status changed. The changes do not represent a wholesale rewiring of the circuits, Edwards said.

"There is reconfiguration going on, but it is probably a shift in the excitation of the different neurons," he explained.

Neuroscientists at Georgia State are working on building computational models of the animals' nervous systems to learn more about how the neurons work in .

"If you can't build it, you don't know truly how it works," Edwards said.

More information: Journal of Neuroscience, 32(16):5638-5645. doi:10.1523/JNEUROSCI.5668-11.2012

Related Stories

Recommended for you

Researchers unlock mystery of skin's sensory abilities

2 hours ago

Humans' ability to detect the direction of movement of stimuli in their sensory world is critical to survival. Much of this stimuli detection comes from sight and sound, but little is known about how the ...

Tackling neurotransmission precision

21 hours ago

Behind all motor, sensory and memory functions, calcium ions are in the brain, making those functions possible. Yet neuroscientists do not entirely understand how fast calcium ions reach their targets inside ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.