Aggregating instead of stabilizing: New insights into the mechanisms of heart disease

May 23, 2012

Malformed desmin proteins aggregate with intact proteins of the same kind, thereby triggering skeletal and cardiac muscle diseases, the desminopathies. This was discovered by researchers from the RUB Heart and Diabetes Center NRW in Bad Oeynhausen led by PD Dr. Hendrik Milting in an interdisciplinary research project with colleagues from the universities in Karlsruhe, Würzburg and Bielefeld. They report in the Journal of Biological Chemistry.

Desmin normally forms stabilizing filaments inside of the cells. Different mutations in the DES gene, which contains the blueprint for the , induce different muscle diseases. Since chromosomes are always present in pairs, each cell has two DES genes on two different chromosomes. The desminopathies break out even if only one of the DES genes is mutated. With Photo Activation Localization Microscopy (PALM), the interdisciplinary team led by Dr. Milting revealed the mechanism behind this.

If one DES gene is mutated and one intact, a cell produces both malformed and normal proteins. Since not only the mutant desmin proteins clump together, but also the intact exemplars are incorporated into the aggregates, one defective DES gene is enough to trigger the disease. Using the PALM microscope, the researchers attach two different fluorescent molecules to the mutant and the intact proteins. They can turn these markers on and off by laser, effectively flashing them. From the "snapshots" of the intact and the mutated proteins, the computer then calculates a joint picture on which both protein variants can be seen. PALM is a novel microscopy technique that can achieve ten times higher resolution than conventional light microscopy.

In the next step, the research group would like to find out how mutations in the DES gene trigger what is termed arrhythmogenic right ventricular cardiomyopathy, ARVC for short. This rare heart muscle disease is characterized by a severe defect – especially to the right ventricle – and by rhythm problems that can lead to sudden cardiac death due to defects in the cell-cell contacts.

Explore further: Breast cancer and heart disease may have common roots

More information: A. Brodehl et al. (2012): Dual-color photoactivation localization microscopy of cardiomyopathy associated desmin mutants, Journal of Biological Chemistry, doi: 10.1074/jbc.M111.313841

Related Stories

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.