Barrow researchers unravel illusion

Barrow Neurological Institute researchers Jorge Otero-Millan, Stephen Macknik, and Susana Martinez-Conde share the recent cover of the Journal of Neuroscience in a compelling study into why illusions trick our brains. Barrow is part of St. Joseph's Hospital and Medical Center in Phoenix.

The study, led by Martinez-Conde's laboratory, explores the neural bases of illusory in Akiyoshi Kitaoka's striking , known as the "Rotating Snakes." Kitaoka is a Japanese psychology professor who specializes in visual illusions of geometric shapes and motion illusions.

The study shows that tiny eye movements and blinking can make a geometric drawing of "snakes" appear to dance. The results help explain the mystery of how the Rotating Snakes illusion tricks the .

"Visual illusions demonstrate the ways in which the brain creates a mental representation that differs from the physical world," says Martinez-Conde. "By studying illusions, we can learn the mechanisms by which the brain constructs our conscious experience of the world."

Earlier studies of the "Rotating Snakes" indicated the perception of motion was triggered by the eyes moving slowly across the illusion. But by tracking eye movements in eight volunteers, the vision neuroscientists found a different explanation: fast called "saccades," some of which are microscopic and undetectable by the viewer, drive the illusory motion.

Participants lifted a button when the snakes seemed to swirl and pressed down the button when the snakes appeared still. Right before the snakes appeared to move, participants tended to produce blinks, saccades and/or microsaccades, and right before the snakes stopped, participants' eyes tended to remain stable, Otero-Millan, Macknik, and Martinez-Conde report in the April 25th cover story.

"Studying the mismatch between perception and reality may lead to a deeper understanding of the mind," says Martinez-Conde. "The findings from our recent study may help us to understand the neural bases of motion perception, both in the normal brain, and in patients with brain lesions that affect the perception of motion. This research could aid in the design of neural prosthetics for patients with brain damage."

Related Stories

Medical research and magic come together

date Nov 11, 2010

The unorthodox research collaboration between two Barrow Neurological Institute scientists and some of the world's greatest magicians is detailed in a new book called Sleights of Mind.

Tiny eye motions help us find where Waldo is

date Feb 20, 2009

(PhysOrg.com) -- To recognize faces in a crowd, the brain employs tiny eye movements called saccades and microsaccades to help us search for objects of interest. While researchers know that these movements ...

Recommended for you

Team makes breakthrough in understanding Canavan disease

date 15 hours ago

UC Davis investigators have settled a long-standing controversy surrounding the molecular basis of an inherited disorder that historically affected Ashkenazi Jews from Eastern Europe but now also arises in other populations ...

Finding the body clock's molecular reset button

date 19 hours ago

An international team of scientists has discovered what amounts to a molecular reset button for our internal body clock. Their findings reveal a potential target to treat a range of disorders, from sleep ...

A 'GPS' to navigate the brain's neuronal networks

date 19 hours ago

In new research published today by Nature Methods, scientists from the Hebrew University of Jerusalem and Harvard University have announced a "Neuronal Positioning System" (NPS) that maps the circuitry of the ...

Neurons constantly rewrite their DNA

date 19 hours ago

Johns Hopkins scientists have discovered that neurons are risk takers: They use minor "DNA surgeries" to toggle their activity levels all day, every day. Since these activity levels are important in learning, ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.