Novel biomarkers reveal evidence of radiation exposure

May 22, 2012

Researchers at the Medical College of Wisconsin have identified novel biomarkers that could be used to confirm exposure to damaging radiation in large groups of people potentially exposed to unknown and variable doses for the purpose of triage and treatment.

The findings are published in the May 1 issue of . John E. Baker, Ph.D., professor of surgery, biochemistry, and at the Medical College of Wisconsin, is the lead author of the study.

There is an urgent need for rapid, accurate and sensitive diagnostic platforms to confirm exposure to and estimate the dose absorbed by individuals—whether that exposure is a result of radiological terrorism, nuclear power plant accident, or nuclear warfare. Clinical symptoms do not provide adequate diagnostic information to triage and treat life-threatening radiation injuries; furthermore, the United States has been found to be ill-suited to evaluate and triage large groups of patients with potential radiation exposure.

In this study, researchers examined the microbes found in rat feces before and after exposure to radiation. Changes were identified in the levels of 212 genomically distinct bacteria, of which 59 are found in humans. Those changes persisted at least 21 days following the exposure to radiation. One particular type of microbe, Proteobacteria, increased almost one-thousand fold four days following irradiation.

"If there were to be a radiological terrorism scenario, there could be hundreds of thousands of people that would be present around the ground zero area, and limited medical resources available to evaluate their exposure levels," explained Dr. Baker. "Analyzing microbial signatures in those patients would be a non-invasive way to obtain results in a timely fashion, and allow us to commit resources to patients in need of intervention."

Explore further: Experts explain radiation risks - real and relative (w/ video)

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.