Analyzing disease transmission at the community level

May 28, 2012

Researchers at the Johns Hopkins Bloomberg School of Public Health have found evidence of a role for neighborhood immunity in determining risk of dengue infection. While it is established that immunity can be an important factor in the large-scale distribution of disease, this study demonstrates that local variation at spatial scales of just a few hundred meters can significantly alter the risk of infection, even in a highly mobile and dense urban population with significant immunity. The study is published in May 28 edition of the journal PNAS.

Dengue is a mosquito-borne disease that infects nearly 50 million people worldwide each year, resulting in more than 19,000 deaths. There are four serotypes of dengue virus (DENV1) circulating in Bangkok, Thailand, where the study was conducted. Infection with dengue provides lifelong immunity to the infecting serotype and there is evidence infection temporarily protects from infection by other serotypes. When susceptibility to other serotypes returns there is an increased risk for severe disease. For the study, the research team used the household location of 1,912 confirmed dengue cases in Bangkok that were admitted to a local children's hospital between 1995 and 2000. The available data enabled the researchers to pair dengue serotype infections with specific households.

Observations indicated that immunological memory of dengue serotypes occurs at the neighborhood level in this large urban setting. The researchers developed methods that have broad application to studying the spatiotemporal structure of where pathogen or is known.

"We observe patterns of spatiotemporal dependence consistent with the expected impacts of lifelong and short-term immunity, and immune enhancement of disease at distances of under one kilometer," said Henrik Salje, lead author of the study and doctoral candidate in the Bloomberg School's Department of Epidemiology.

"By providing insight into the potential spatial scales that immunity in a population is correlated and distances over which the is dispersed, these findings can help us further understand how is being maintained in endemic populations," said the study's senior author, Derek Cummings, PhD, assistant professor with the Bloomberg School's departments of Epidemiology and International Health.

Explore further: Study details how dengue infection hits harder the second time around

More information: "Revealing the microscale spatial signature of dengue transmission and immunity in an urban population" by Henrik Salje, et al. PNAS.

Related Stories

Dengue virus turns on mosquito genes that make them hungrier

March 29, 2012

Researchers at the Johns Hopkins Bloomberg School of Public Health have, for the first time, shown that infection with dengue virus turns on mosquito genes that makes them hungrier and better feeders, and therefore possibly ...

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.