Growth factor in stem cells may spur recovery from multiple sclerosis

May 21, 2012

A substance in human mesenchymal stem cells that promotes growth appears to spur restoration of nerves and their function in rodent models of multiple sclerosis (MS), researchers at Case Western Reserve University School of Medicine have found.

Their study appeared in the online version of on Sunday, May 20.

In animals injected with hepatocyte , inflammation declined and neural cells grew. Perhaps most important, the , which protects nerves and their ability to gather and send information, regrew, covering lesions caused by the disease.

"The importance of this work is we think we've identified the driver of the recovery," said Robert H. Miller, professor of neurosciences at the School of Medicine and vice president for research at Case Western Reserve University.

Miller, neurosciences instructor Lianhua Bai and biology professor Arnold I. Caplan, designed the study. They worked with Project Manager Anne DeChant, and research assistants Jordan Hecker, Janet Kranso and Anita Zaremba, from the School of Medicine; and Donald P. Lennon, a research assistant from the university's Skeletal Research Center.

In MS, the myelin, risking injury to exposed nerves' intricate wiring. When damaged, can be interrupted, causing and coordination, cognitive ability and other functions. Over time, intermittent losses may become permanent.

Miller and Caplan reported in 2009 that when they injected human mesenchymal stem cells into rodent models of MS, the animals recovered from the damage wrought by the disease. Based on their work, a clinical trial is underway in which are injected with their own stem cells.

In this study, the researchers first wanted to test whether the presence of stem cells or something cells produce promotes recovery. They injected mice with the medium in which mesenchymal stem cells, culled from bone marrow, grew.

All 11 animals, which have a version of MS, showed a rapid reduction in functional deficits.

Analysis showed that the disease remained on course unless the molecules injected were of a certain size; that is, the molecular weight ranged between 50 and 100 kiloDaltons.

Research by others and results of their own work indicated hepatocyte growth factor, which is secreted by mesenchymal stem cells, was a likely instigator.

The scientists injected animals with 50 or 100 nanograms of the growth factor every other day for five days. The level of signaling molecules that promote inflammation decreased while the level of signaling molecules that counter inflammation increased. grew and nerves laid bare by MS were rewrapped with myelin. The 100-nanogram injections appeared to provide slightly better recovery.

To test the system further, researchers tied up cell-surface receptors, in this case cMet receptors that are known to work with the growth factor.

When they jammed the receptors with a function-blocking cMet antibody, neither the mesenchymal stem cell medium nor the hepatocyte growth factor injections had any effect on the disease. In another test, injections of an anti-hepatocyte growth factor also blocked recovery.

The researchers will continue their studies, to determine if they can screen mesenchymal stem cells for those that produce the higher amounts of hepatocyte growth factor needed for effective treatment. That could lead to a more precise cell therapy.

"Could we now take away the and treat only with hepatocyte growth factor?" Miller asked. "We've shown we can do that in an animal but it's not clear if we can do that in a patient."

They also plan to test whether other factors may be used to stimulate the cMet receptors and induce recovery.

Explore further: A drugstore within: Mesenchymal stem cells protect and heal

Related Stories

Mice stem cells guided into myelinating cells by the trillions

September 25, 2011

Scientists at Case Western Reserve University School of Medicine found a way to rapidly produce pure populations of cells that grow into the protective myelin coating on nerves in mice. Their process opens a door to research ...

Mechanism ID'd for benefit of stem cells in autoimmunity

May 2, 2012

(HealthDay) -- Bone marrow mesenchymal stem cells (BMMSCs) activate a mechanism involving coupling of FAS/FAS ligand to induce T cell apoptosis and immune tolerance, according to an experimental study published online April ...

Recommended for you

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.