Key gene found responsible for chronic inflammation, accelerated aging and cancer

Researchers at NYU School of Medicine have, for the first time, identified a single gene that simultaneously controls inflammation, accelerated aging and cancer.

"This was certainly an unexpected finding," said principal investigator Robert J. Schneider, PhD, the Albert Sabin Professor of , associate director for translational research and co-director of the Program at NYU Langone Medical Center. "It is rather uncommon for one gene to have two very different and very significant functions that tie together control of aging and . The two, if not regulated properly, can eventually lead to . It's an exciting scientific find."

The study, funded by the National Institutes of Health, appears online ahead of print today in Molecular Cell and is scheduled for the July 13 print issue.

For decades, the scientific community has known that inflammation, accelerated aging and cancer are somehow intertwined, but the connection between them has remained largely a mystery, Dr. Schneider said. What was known, due in part to past studies by Schneider and his team, was that a gene called AUF1 controls inflammation by turning off the to stop the onset of . But this finding, while significant, did not explain a connection to accelerated aging and cancer.

When the researchers deleted the AUF1 gene, accelerated aging occurred, so they continued to focus their research efforts on the gene. Now, more than a decade in the making, the mystery surrounding the connection between inflammation, advanced aging and cancer is finally being unraveled.

The current study reveals that AUF1, a family of four related genes, not only controls the inflammatory response, but also maintains the integrity of chromosomes by activating the enzyme telomerase to repair the ends of chromosomes, thereby simultaneously reducing inflammation, preventing rapid aging and the development of cancer, Dr. Schneider explained.

"AUF1 is a medical and scientific trinity," Dr. Schneider said. "Nature has designed a way to simultaneously turn off harmful inflammation and repair our , thereby suppressing aging at the cellular level and in the whole animal."

With this new information, Dr. Schneider and colleagues are examining human populations for specific types of genetic alterations in the AUF1 gene that are associated with the co-development of certain immune diseases, increased rates of aging and higher cancer incidence in individuals to determine exactly how the alterations manifest and present themselves clinically.

add to favorites email to friend print save as pdf

Related Stories

Effects of aging in stem cells

Jul 24, 2007

There is little disagreement that the body’s maintenance and repair systems deteriorate with age, even as there is plenty of disagreement as to why. Stem cells combat the aging process by replenishing old ...

Recommended for you

Study identifies genetic change in autism-related gene

4 hours ago

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

Cancer leaves a common fingerprint on DNA

Aug 25, 2014

Regardless of their stage or type, cancers appear to share a telltale signature of widespread changes to the so-called epigenome, according to a team of researchers. In a study published online in Genome Me ...

User comments