Mathematical model unlocks key to brain wiring

May 10, 2012

(Medical Xpress) -- A new mathematical model predicting how nerve fibres make connections during brain development could aid understanding of how some cognitive disorders occur.

The model, constructed by scientists at the Queensland Institute (QBI) and School of Mathematics and Physics at the University of Queensland (UQ), gives new insight into how changing chemical levels in fibres can modify nerve wiring underpinning connections in the brain.

Professor Geoff Goodhill says that while scientists have long known that changing these chemical levels can change where nerve fibres grow, only now are they understanding why this is the case.

“Our allows us to predict precisely how these chemical levels control the direction in which nerve fibres grow, during both neural development and regeneration after injury,” he said.

Correct brain wiring is fundamental for normal brain function.

Recent discoveries suggest that wiring problems may underpin a number of nervous system disorders including autism, dyslexia, Down syndrome, Tourette's syndrome and Parkinson's disease.

The new model, published in the prestigious cell journal Neuron demonstrates the important role mathematics can play in understanding how the brain develops, and perhaps ultimately preventing such disorders.

Related Stories

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.