Mathematical model unlocks key to brain wiring

(Medical Xpress) -- A new mathematical model predicting how nerve fibres make connections during brain development could aid understanding of how some cognitive disorders occur.

The model, constructed by scientists at the Queensland Institute (QBI) and School of Mathematics and Physics at the University of Queensland (UQ), gives new insight into how changing chemical levels in fibres can modify nerve wiring underpinning connections in the brain.

Professor Geoff Goodhill says that while scientists have long known that changing these chemical levels can change where nerve fibres grow, only now are they understanding why this is the case.

“Our allows us to predict precisely how these chemical levels control the direction in which nerve fibres grow, during both neural development and regeneration after injury,” he said.

Correct brain wiring is fundamental for normal brain function.

Recent discoveries suggest that wiring problems may underpin a number of nervous system disorders including autism, dyslexia, Down syndrome, Tourette's syndrome and Parkinson's disease.

The new model, published in the prestigious cell journal Neuron demonstrates the important role mathematics can play in understanding how the brain develops, and perhaps ultimately preventing such disorders.

Related Stories

Neuroscientist steers research into neurological disorders

Mar 02, 2010

Scientists at the Queensland Brain Institute have uncovered a vital clue into how the brain is wired, which could eventually steer research into nervous system disorders such as Parkinson's disease and cognitive disorders ...

Recommended for you

Neurons express 'gloss' using three perceptual parameters

Sep 19, 2014

Japanese researchers showed monkeys a number of images representing various glosses and then they measured the responses of 39 neurons by using microelectrodes. They found that a specific population of neurons ...

Scientists show rise and fall of brain volume

Sep 19, 2014

(Medical Xpress)—We can witness our bodies mature, then gradually grow wrinkled and weaker with age, but it is only recently that scientists have been able to track a similar progression in the nerve bundles ...

User comments