Mathematical model unlocks key to brain wiring

May 10, 2012

(Medical Xpress) -- A new mathematical model predicting how nerve fibres make connections during brain development could aid understanding of how some cognitive disorders occur.

The model, constructed by scientists at the Queensland Institute (QBI) and School of Mathematics and Physics at the University of Queensland (UQ), gives new insight into how changing chemical levels in fibres can modify nerve wiring underpinning connections in the brain.

Professor Geoff Goodhill says that while scientists have long known that changing these chemical levels can change where nerve fibres grow, only now are they understanding why this is the case.

“Our allows us to predict precisely how these chemical levels control the direction in which nerve fibres grow, during both neural development and regeneration after injury,” he said.

Correct brain wiring is fundamental for normal brain function.

Recent discoveries suggest that wiring problems may underpin a number of nervous system disorders including autism, dyslexia, Down syndrome, Tourette's syndrome and Parkinson's disease.

The new model, published in the prestigious cell journal Neuron demonstrates the important role mathematics can play in understanding how the brain develops, and perhaps ultimately preventing such disorders.

Related Stories

Recommended for you

Adult brain prunes branched connections of new neurons

May 2, 2016

When tweaking its architecture, the adult brain works like a sculptor—starting with more than it needs so it can carve away the excess to achieve the perfect design. That's the conclusion of a new study that tracked developing ...

Control of fertility: A new player identified

May 2, 2016

Individual small RNAs are responsible for controlling the expression of gonadoliberin or GnRH (Gonadotropin-Releasing Hormone), a neurohormone that controls sexual maturation, the appearance of puberty, and fertility in adults. ...

Unraveling complex neuronal networks

May 2, 2016

One of the fundamental questions in neuroscience is how neuronal circuits are wired to process information. The research group led by Rainer Friedrich has developed new methods to determine the complex morphology of densely ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.