Molecule found that inhibits estrogen, key risk factor for endometrial and breast cancers

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered a molecule that inhibits the action of estrogen. This female hormone plays a key role in the growth, maintenance and repair of reproductive tissues and fuels the development of endometrial and breast cancers. The molecule, discovered in animal studies, could lead to new therapies for preventing and treating estrogen-related diseases in humans. The findings were published online April 26 in the PNAS Plus.

The hormones estradiol (the most important form of estrogen) and progesterone prepare the uterus for pregnancy. They trigger a series of and events that prepare the uterine lining () for implantation of a fertilized egg. Although this process is tightly controlled, uterine cells sometimes proliferate abnormally, leading to menstrual irregularities, endometrial polyps, endometriosis, or endometrial cancer ─ the most common female genital tract malignancy, causing six percent of cancer deaths among women in the U.S. and a higher proportion worldwide.

"The molecular mechanisms that underlie these pathologies are still obscure ─ and so are the mechanisms involved in normal hormonal regulation of cell proliferation in the endometrium, which is essential for successful pregnancy," said lead author Jeffrey Pollard, Ph.D., professor of developmental and molecular biology and of obstetrics & gynecology and women's health at Einstein. He also holds the Louis Goldstein Swan Chair in Women's Cancer Research and is the deputy director of the Albert Einstein Cancer Center.

In studies involving rodents, Dr. Pollard discovered that a molecule called KLF15 (Kruppel-like transcription factor-15) controls the actions of estradiol and progesterone in the endometrium by inhibiting the production MCM2, a protein involved in DNA synthesis.

"Our findings raise the possibility that it may be possible to prevent or treat endometrial and and other diseases related to estrogen by promoting the action of KLF15," said Dr. Pollard.

More information: The paper, titled "KLF15 negatively regulates estrogen-induced epithelial cell proliferation by inhibition of DNA replication licensing," is coauthored by Sanhita Ray, Ph.D., a postdoctoral fellow at Einstein.

Related Stories

Recommended for you

Testing time for stem cells

2 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

21 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments