The music of the (hemi)spheres sheds new light on schizophrenia

In 1619, the pioneering astronomer Johannes Kepler published Harmonices Mundi in which he analyzed data on the movement of planets and asserted that the laws of nature governing the movements of planets show features of harmonic relationships in music. In so doing, Kepler provided important support for the, then controversial, model of the universe proposed by Copernicus.

In the latest issue of Biological Psychiatry, researchers at the University of California in San Diego suggest that careful analyses of the electrical signals of brain activity, measured using electroencephalography (EEG), may reveal important harmonic relationships in the electrical activity of brain circuits.

The underlying premise is a simple one - that brain function is expressed by circuits that fire, and therefore generate oscillating EEG signals, at different frequencies.

High frequency EEG activity called gamma, for example, might reflect the activity of fast-spiking cells which are often a subclass of inhibitory containing parvalbumin. Represented musically, this would be a high pitch, i.e., toward the right side of the piano.

Lower frequency EEG activity, called theta, might come from cells that fire with a lower frequency.

As circuits interact with each other, one would see different "musical combinations", like the chords of music, emerging in the . Abnormalities in the structure and function of brain circuits would be reflected in cacophonous music, chords where the musical "voices" are firing at the wrong rate (pitch), volume (amplitude), or timing.

It is increasingly evident that schizophrenia is a disorder characterized by disturbances in the "music of the ." This new report describes relationships between low- and high-frequency EEG oscillations in the human brain produced when high frequency auditory stimuli are presented to a research subject. The authors observed relatively slower oscillations and reduced cross-phase synchrony (for example, peak of theta coinciding with peak of gamma) in schizophrenia patients compared to healthy study participants.

Dr. John Krystal, Editor of , commented, "The new findings highlight the importance of understanding the relationships between different circuits. It seems that cortical abnormalities in schizophrenia disturb brain function, in part, by disturbing the 'tuning' of in relation to each other."

More information: The article is "Hierarchical Organization of Gamma and Theta Oscillatory Dynamics in Schizophrenia" by Kenji Kirihara, Anthony J. Rissling, Neal R. Swerdlow, David L. Braff, and Gregory A. Light (doi: 10.1016/j.biopsych.2012.01.016). The article appears in Biological Psychiatry, Volume 71, Issue 10 (May 15, 2012)

Related Stories

Brain's 'radio stations' have much to tell scientists

Feb 07, 2011

(PhysOrg.com) -- Like listeners adjusting a high-tech radio, scientists at Washington University School of Medicine in St. Louis have tuned in to precise frequencies of brain activity to unleash new insights ...

How to read brain activity?

Dec 04, 2009

(PhysOrg.com) -- For the very first time, scientists show what EEG can really tell us about how the brain functions.

Recommended for you

Researchers unlock mystery of skin's sensory abilities

16 hours ago

Humans' ability to detect the direction of movement of stimuli in their sensory world is critical to survival. Much of this stimuli detection comes from sight and sound, but little is known about how the ...

Tackling neurotransmission precision

Dec 18, 2014

Behind all motor, sensory and memory functions, calcium ions are in the brain, making those functions possible. Yet neuroscientists do not entirely understand how fast calcium ions reach their targets inside ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.