Phylogenomic analysis reveals origin, spread of MRSA clone

May 21, 2012
Phylogenomic analysis reveals origin, spread of MRSA clone

(HealthDay) -- Phylogenomic analysis has revealed details about the emergence and transmission of a major methicillin-resistant Staphylococcus aureus (MRSA) clone, EMRSA-16, according to research published online May 14 in the Proceedings of the National Academy of Sciences.

Paul R. McAdam, from the University of Edinburgh in the United Kingdom, and colleagues performed a Bayesian phylogenetic reconstruction on the basis of genome sequences from 87 Staphylococcus aureus isolates. The isolates were collected from patients in three continents over a 53-year period and included 60 isolates of the pandemic EMRSA-16 clone and 27 additional clonal complex 30 (CC30) isolates.

The researchers found that there was a shared by the three major pandemic clones, originating from the CC30 lineage (phage type 80/81, Southwest Pacific, and EMRSA-16), which existed more than 100 years ago. In contrast, the hospital-associated EMRSA-16 clone likely emerged 35 years ago. A genome-wide analysis of CC30 revealed molecular correlates of hospital- or community-associated pandemics, including mobile genetic elements and nonsynonymous mutations impacting both and virulence. Phylogeographic analysis demonstrated that the spread of EMRSA-16 within the United Kingdom was from hospitals in large population centers in London and Glasgow to regional health care settings.

"Taken together, the high-resolution phylogenomic approach used resulted in a unique understanding of the emergence and transmission of a major MRSA clone and provided molecular correlates of its hospital adaptation," the authors write.

ARK-Genomics at the Roslin Institute performed sequencing services for the study.

Explore further: MRSA tailors virulence mechanisms to the hospital setting

More information: Abstract
Full Text (subscription or payment may be required)

Related Stories

MRSA tailors virulence mechanisms to the hospital setting

April 25, 2012

(Medical Xpress) -- In the hospital environment where antibiotic usage is extremely high, it seems that healthcare associated methicillin resistant Staphylococcus aureus (MRSA) has cleverly adapted for survival.

Recommended for you

Bile acid uptake inhibitor prevents NASH / fatty liver in mice

September 21, 2016

Drugs that interfere with bile acid recycling can prevent several aspects of NASH (nonalcoholic steatohepatitis) in mice fed a high-fat diet, scientists from Emory University School of Medicine and Children's Healthcare of ...

New therapeutic target for Crohn's disease

September 20, 2016

Research from the Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a promising new target for future drugs to treat inflammatory bowel disease (IBD). The study, published today in Cell Reports, also indicates ...

Mosquitoes, Zika and biotech regulation

September 19, 2016

In a new Policy Forum article in Science, NC State professor Jennifer Kuzma argues that federal authorities are missing an opportunity to revise outdated regulatory processes not fit for modern innovations in biotechnology, ...

Arthritis drug may help with type of hair loss

September 22, 2016

(HealthDay)—For people who suffer from a condition that causes disfiguring hair loss, a drug used for rheumatoid arthritis might regrow their hair, a new, small study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.