Scientists identify agent that can block fibrosis of skin, lungs

May 30, 2012

Researchers at the University of Pittsburgh School of Medicine have identified an agent that in lab tests protected the skin and lungs from fibrosis, a process that can ultimately end in organ failure and even death because the damaged tissue becomes scarred and can no longer function properly. The findings were published today in Science Translational Medicine.

There are no effective therapies for life-threatening illnesses such as idiopathic and systemic sclerosis, which cause progressive organ scarring and failure, said senior author Carol A. Feghali-Bostwick, Ph.D., associate professor, Division of Pulmonary, Allergy and Critical Care Medicine, and co-Director of the Scleroderma Center, Pitt School of Medicine.

"It's estimated that contributes to 45 percent of all deaths in developed countries because is the final common pathway for numerous diseases," she said. "Identifying a way to stop this process from happening could have enormous impact on mortality and quality of life."

The research team evaluated E4, a piece of protein or peptide derived from endostatin, a component of collagen known for its inhibition of new . In lab tests, healthy that were treated to become fibrotic remained normal when E4 was present. The skin and lungs of mice were protected from cell death and tissue scarring by a single injection of E4 administered five or eight days after they were given the cancer drug , which is known to induce fibrosis. The peptide also could reverse scarring that had already occurred, the researchers found.

In a unique approach, the investigators also tested E4 in human skin maintained in the laboratory to confirm it would be effective in treating fibrosis in a human tissue. E4 blocked new and ongoing fibrosis in human skin.

The agent might work by stalling the cross-linking of collagen needed to form thick scars, Dr. Feghali-Bostwick said. While the body naturally produces endostatin, it appears that it cannot make sufficient amounts to counteract fibrosis development in some diseases.

"This endostatin peptide passes two important hurdles that suggest it is a promising candidate drug for development for patients with idiopathic pulmonary fibrosis and systemic sclerosis" said Mark T. Gladwin, M.D., chief, Division of Pulmonary, Allergy and at UPMC and Pitt. "It reverses established disease in animal models and it reverses fibrosis in the human skin fibrosis model."

In a case of serendipity, the researchers discovered E4 while exploring the process of fibrosis. Post-doctoral fellow and study co-author Yukie Yamaguchi, M.D., Ph.D., was conducting some experiments with proteins thought to facilitate the scarring process.

"Dr. Yamaguchi showed me the tests that showed endostatin wasn't working to increase fibrosis, but in fact shut it down," Dr. Feghali-Bostwick said. "It was the opposite of what we expected and I was very excited about our finding. As Louis Pasteur once said, 'chance favors the prepared mind.'"

Explore further: Cancer drug may also work for scleroderma

Related Stories

Cancer drug may also work for scleroderma

September 22, 2011

A drug used to treat cancer may also be effective in diseases that cause scarring of the internal organs or skin, such as pulmonary fibrosis or scleroderma.

Progression of lung fibrosis blocked in mouse model

October 5, 2011

A study by researchers at the University of California, San Diego School of Medicine may lead to a way to prevent the progression, or induce the regression, of lung injury that results from use of the anti-cancer chemotherapy ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.