Scientists study serious immune malfunction

Defects in the gene that encodes the XIAP protein result in a serious immune malfunction. Scientists used biochemical analyses to map the protein's ability to activate vital components of the immune system. Their results have recently been published in Molecular Cell, a journal of international scientific repute.

Researchers at The Foundation Center for Research at the University of Copenhagen have mapped how the XIAP protein activates a vital component of the system, specifically the component that fights bacterial infections in the gastro-intestinal system:

"Our results are an important step on the way to understanding the very serious – but fortunately rare – genetic immune disorder called X-linked lymphoproliferative syndrome type 2 (XLP2), which affects male children," says Associate Professor Mads Gyrd-Hansen from the The Novo Nordisk Foundation Center for Protein Research, and explains more about the disease:

"The gastro-intestinal system can be viewed as a long tube running through the body, absorbing nutrients and water. The contact surface between the intestinal system and the rest of the body is protected by an efficient barrier that confines the bacteria to the intestine. This barrier is not intact in XLP2 patients, who thus lack the necessary bulwark, so to say, between bacteria and body."

The new study published in Molecular Cell shows that genetic mutations found in patients with XLP2 specifically destroy XIAP's ability to attach the signalling protein ubiquitin to other proteins. The attachment process is vital for activating the and therefore for survival.

Important knowledge for leukaemia research

While the results from the study published in are first and foremost relevant for XLP2 patients, cancer researchers can also benefit from the new discoveries:

"Several pharmaceutical companies have developed drugs to act on IAP proteins, including XIAP, as part of cancer treatment. Several of the drugs are currently being tested in clinical trials for their efficacy in treatment of leukaemia and other forms of cancer. It is therefore essential to know precisely which biological processes in the organism the treatment can potentially affect," continues Mads Gyrd-Hansen.

Mads Gyrd-Hansen and his colleagues at The Novo Nordisk Foundation Center for have been collaborating for a good 18 months together with research groups in Germany, the UK and Australia, and the competencies of the individual groups have made it possible to rapidly achieve high-quality results quickly:

"International collaboration has made it possible – in a short time – to describe detailed molecular processes, to use the descriptions to create mouse models for further tests and thereafter to link the results of these tests to genetic mutations identified in patients."

add to favorites email to friend print save as pdf

Related Stories

Critical link in cell death pathway revealed

Jul 22, 2009

The role of a protein called XIAP in the regulation of cell death has been identified by Walter and Eliza Hall Institute researchers and has led them to recommend caution when drugs called IAP inhibitors are ...

Scientists locate disease switches

Jul 17, 2009

A team of scientists from the University of Copenhagen and the Max Planck Institute in Germany, has identified no less than 3,600 molecular switches in the human body. These switches, which regulate protein functions, may ...

Recommended for you

New hay fever blood test nothing to sneeze at

Sep 29, 2014

(Medical Xpress)—Brisbane researchers have developed a blood test that can accurately detect one of the commonest causes of hay fever, paving the way for new treatments.

Geisel researchers contribute to study of trained immunity

Sep 26, 2014

A study published in the journal science provides support for a new—and still controversial—understanding of the immune system. the research was conducted by collaborators in the U.S. and Europe, including Robert Cramer ...

User comments