Targeting tuberculosis 'hotspots' could have widespread benefit: study

May 28, 2012

Reducing tuberculosis transmission in geographic "hotspots" where infections are highest could significantly reduce TB transmission on a broader scale, according to a study led by researchers at the Johns Hopkins Bloomberg School of Public Health. An analysis of data from Rio de Janeiro showed that a reduction in TB infections within three high-transmission hotspots could reduce citywide transmission by 9.8 percent over 5 years, and as much as 29 percent over 50 years. The study was published May 28 by the journal PNAS.

"Targeting treatment of 'core groups' as a way to reduce community-wide transmission is common with diseases like HIV and , but is less accepted as a mantra for ," said David Dowdy, MD, PhD, ScM, lead author of the study and assistant professor in the Bloomberg School's Department of Epidemiology. "Our findings suggest that hotspots containing 6 percent of a city's population can be responsible for 35 percent or more of its ongoing TB transmission. Controlling TB in these hotspots may have a similar impact on long-term, community-wide TB incidence as achieving the same targets in the remaining 94 percent of the population."

For the study, Dowdy and his colleagues developed mathematical models for TB transmission using from Rio de Janeiro. Each model tested different scenarios for TB transmission between the hotspot and the rest of the community. Co-infection with HIV was also factored into the model.

According to the study, reducing TB in the hotspot to those in the general community reduced citywide TB incidence by a mean 2 percent per year over the first 5 years. By year 50, TB incidence was reduced by 29.7 percent, reflecting a 62.8 percent reduction in incidence in the and a 23.1 percent reduction in the remaining community.

Tuberculosis infects more than 8.8 million people worldwide, resulting in 1.4 million deaths each year. The disease is known to cluster in hotspots typically characterized by crowding, poverty and other illnesses such as HIV. Nevertheless, TB transmission appears to be more homogeneous than that of many other infectious diseases, in which 20 percent of the population may generate 80 percent of infections.

According to Dowdy, "TB may not follow the same '80/20' rule that we see in parasitic or sexually transmitted diseases, but the '35/6' rule seen in our study suggests that targeting hotspots is still the best way to control TB in a community."

Explore further: HIV/AIDS linked to drug resistant TB

More information: "Heterogeneity in tuberculosis transmission and the role of geographic hotspots in propagating epidemics", PNAS, May 28, 2012.

Related Stories

HIV/AIDS linked to drug resistant TB

November 16, 2006

U.S. scientists say a highly drug-resistant form of tuberculosis has been linked to HIV/AIDS in a study conducted in rural South Africa.

Report: U.S. falling short on TB battle

February 3, 2008

A new report said the United States is falling short of its benchmark goal of eliminating tuberculosis as a public health problem by 2010.

Researchers urge integrating TB into HIV care

July 22, 2008

In resource-limited settings where tuberculosis is a major cause of mortality among HIV patients and where a multidrug-resistant TB epidemic is emerging, researchers are pressing for approaches to integrate TB prevention ...

New tuberculosis research movement needed

November 30, 2011

In this week's PLoS Medicine, Christian Lienhardt from the WHO in Geneva, Switzerland and colleagues announce that the Stop TB Partnership and the WHO Stop TB Department have launched the TB Research Movement.

Recommended for you

Team makes Zika drug breakthrough

August 29, 2016

A team of researchers from Florida State University, Johns Hopkins University and the National Institutes of Health has found existing drug compounds that can both stop Zika from replicating in the body and from damaging ...

Zika virus may persist in the vagina days after infection

August 25, 2016

The Zika virus reproduces in the vaginal tissue of pregnant mice several days after infection, according to a study by Yale researchers. From the genitals, the virus spreads and infects the fetal brain, impairing fetal development. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.