Let's get moving: Unravelling how locomotion starts

Let's get moving:  Unravelling how locomotion starts
The Xenopus frog tadpole is a small, simple vertebrate

(Medical Xpress) -- Scientists at the University of Bristol have shed new light on one of the great unanswered questions of neuroscience: how the brain initiates rhythmic movements like walking, running and swimming.

While experiments in the 1970s using electrical brain stimulation identified areas of the brain responsible for starting locomotion, the precise neuron-by-neuron pathway has not been described in any vertebrate – until now. 

To find this pathway, Dr. Edgar Buhl and colleagues in Bristol’s School of Biological Sciences studied a small, simple vertebrate: the Xenopus frog tadpole.

They found that the pathway to initiate swimming consists of just four types of .  By touching skin on the head of the tadpole and applying cellular neurophysiology and anatomy techniques, the scientists identified nerve cells that detect the touch on the skin, two types of brain nerve cells which pass on the signal, and the motor that control the swimming muscles. 

Dr. Buhl said: “These findings address the longstanding question of how locomotion is initiated following sensory stimulation and, for the first time in any vertebrate, define in detail a direct responsible.  They could thus be of great evolutionary interest and could also open the path to understanding initiation of locomotion in other vertebrates.”

When mechanisms in the brain that initiate locomotion break down – for example, in people with Parkinson’s disease – starting to walk becomes a real problem.  Therefore, understanding the initiation of swimming in tadpoles could be a first step towards understanding the initiation of locomotion in more complex vertebrates, including people, and may eventually have implications for treating movement disorders such as Parkinson's.

The research is published today in the Journal of Physiology.

More information: ‘The role of a trigeminal sensory nucleus in the initiation of locomotion’ by Edgar Buhl, et al. Journal of Physiology

add to favorites email to friend print save as pdf

Related Stories

Brain cells created from patients' skin cells

Feb 07, 2012

(Medical Xpress) -- Cambridge scientists have, for the first time, created cerebral cortex cells – those that make up the brain’s grey matter – from a small sample of human skin.  The researchers’ ...

Researchers 'switch off' neurodegeneration in mice

May 08, 2012

Researchers at the Medical Research Council (MRC) Toxicology Unit at the University of Leicester have identified a major pathway leading to brain cell death in mice with neurodegenerative disease. The team was able to block ...

Recommended for you

Know the brain, and its axons, by the clothes they wear

Apr 18, 2014

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments