Wired for avalanches -- and learning

The brain's neurons are coupled together into vast and complex networks called circuits. Yet despite their complexity, these circuits are capable of displaying striking examples of collective behavior such as the phenomenon known as "neuronal avalanches," brief bursts of activity in a group of interconnected neurons that set off a cascade of increasing excitation.

In a paper published in the American Institute of Physics' journal , an international team of researchers from China, Hong Kong, and Australia explores connections between neuronal avalanches and a model of learning – a rule for how neurons "choose" to connect among themselves in response to stimuli. The learning model, called spike time-dependent plasticity, is based on observations of real behavior in the .

The researchers' simulations reveal that the complex neuronal circuit obtained from the learning model would also be good at generating neuronal avalanches. This agreement between the model and a real, proven behavior of suggests that the learning model is an accurate way to describe how the brain processes information.

The authors say their work could aid an understanding of how learning could lead to the formation of cortical structures in the brain, as well as why the resulting structures are so efficient at processing large amounts of information. "While [the finding] is entirely consistent with existing neurophysiology, our work is the first to provide this concrete link" between this particular learning rule and neuronal , says co-author Michael Small of the University of Western Australia. "It provides a simple, and therefore perhaps surprising, explanation for how a system as complex as the cortex can generate such striking collective behavior."

More information: doi: 10.1063/1.3701946

Related Stories

Watching neurons learn

Apr 26, 2012

What happens at the level of individual neurons while we learn? This question intrigued the neuroscientist Daniel Huber, who recently arrived at the Department of Basic Neuroscience at the University of Geneva. During his ...

Mechanism of nicotine's learning effects explored

Apr 04, 2007

While nicotine is highly addictive, researchers have also shown the drug to enhance learning and memory—a property that has launched efforts to develop nicotine-like drugs to treat cognitive deficits in Alzheimer’s and ...

Recommended for you

New ALS associated gene identified using innovative strategy

4 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

4 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

4 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

8 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

8 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

billye22
not rated yet May 02, 2012
"Neuronal avalanches" remind me of flocks of birds.