Wired for avalanches -- and learning

May 2, 2012

The brain's neurons are coupled together into vast and complex networks called circuits. Yet despite their complexity, these circuits are capable of displaying striking examples of collective behavior such as the phenomenon known as "neuronal avalanches," brief bursts of activity in a group of interconnected neurons that set off a cascade of increasing excitation.

In a paper published in the American Institute of Physics' journal , an international team of researchers from China, Hong Kong, and Australia explores connections between neuronal avalanches and a model of learning – a rule for how neurons "choose" to connect among themselves in response to stimuli. The learning model, called spike time-dependent plasticity, is based on observations of real behavior in the .

The researchers' simulations reveal that the complex neuronal circuit obtained from the learning model would also be good at generating neuronal avalanches. This agreement between the model and a real, proven behavior of suggests that the learning model is an accurate way to describe how the brain processes information.

The authors say their work could aid an understanding of how learning could lead to the formation of cortical structures in the brain, as well as why the resulting structures are so efficient at processing large amounts of information. "While [the finding] is entirely consistent with existing neurophysiology, our work is the first to provide this concrete link" between this particular learning rule and neuronal , says co-author Michael Small of the University of Western Australia. "It provides a simple, and therefore perhaps surprising, explanation for how a system as complex as the cortex can generate such striking collective behavior."

Explore further: Researchers connect neurons to computers to decipher the enigmatic code of neuronal circuits

More information: doi: 10.1063/1.3701946

Related Stories

Watching neurons learn

April 26, 2012

What happens at the level of individual neurons while we learn? This question intrigued the neuroscientist Daniel Huber, who recently arrived at the Department of Basic Neuroscience at the University of Geneva. During his ...

Recommended for you

Neuroscience study supports 200-year old art theory

September 19, 2016

A pilot study from a group of Dutch scientists implies that being told that an image is an artwork automatically changes our response, both on a neural and behavioural level. This may mean that our brains automatically up- ...

Human neuron transplants treat spinal cord injury in mice

September 23, 2016

Chronic pain and loss of bladder control are among the most devastating consequences of spinal cord injury, rated by many patients as a higher priority for treatment than paralysis or numbness. Now a UC San Francisco team ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

billye22
not rated yet May 02, 2012
"Neuronal avalanches" remind me of flocks of birds.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.