Advanced cancers destined to recur after treatment with single drugs that 'target' tumor cells: study

Targeted cancer cell therapies using man-made proteins dramatically shrink many tumors in the first few months of treatment, but new research from Johns Hopkins scientists finds why the cells all too often become resistant, the treatment stops working, and the disease returns.

In a study of 28 advanced patients treated with the monoclonal antibody panitumumab, the Johns Hopkins Kimmel Cancer Center team reports that drug-resistance tumor cell mutations appear in the blood of patients five to seven months later, and that low levels of these mutations exist in nearly all tumors before the therapy begins, making the cancers predestined to recur.

"These resistance mutations develop by chance as cancer cells divide so that tumors always contain thousands of resistance cells," says Luis Diaz, M.D., associate professor of oncology and director of the Swim Across America laboratory at Johns Hopkins, who says the findings likely apply to any targeted cancer therapy.

"The best chance for a cure is when a tumor is very small, but when the cancer is advanced, our research quantifies the probability that we can achieve cures with single-agent targeted therapies," says Bert Vogelstein, M.D., professor and co-director of the Ludwig Center at Johns Hopkins and, Howard Hughes Medical Institute investigator. "Long-term remissions of advanced cancers will be nearly impossible with single targeted agents," he adds.

The Johns Hopkins scientists analyzed blood samples taken from 28 patients with advanced . These patients were enrolled in a clinical trial of panitumumab, one of a new and growing class of , or that homes in on cancer cells' vital growth pathways. In the case of panitumumab, the agent targets a growth-factor receptor called EGFR. Patients most likely to respond to the drug also have normal copies of the KRAS gene in their tumors.

Twenty-four of the 28 patients in the study had normal KRAS gene copies in their tumors, and four had mutations in KRAS, serving as a control group. Blood samples were taken before beginning the therapy and at four-week intervals during the therapy, for a total of 169 combined blood draws.

Virtually all cancers shed DNA material into the blood, according to the researchers, and provide an easy route to collecting molecular evidence from lesions typically inaccessible for surgical biopsy. "The amount of tumor DNA found in the blood is akin to tests used to determine HIV viral load," says Diaz.

In their analysis, reported online June 13 in the journal Nature, the scientists found that nine of the 24 patients with normal KRAS genes (38 percent) exhibited KRAS mutations detectable in the blood within five to seven months of beginning therapy. KRAS mutations were detected in three patients before imaging scans showed metastatic tumor growth. Then, working with Martin Nowak, Ph.D., and his team from Harvard University, the investigators used mathematical models to calculate when KRAS mutations likely originated. Nowak and colleagues determined that KRAS mutations were present prior to the initiation of treatment with panitumumab.

"The probability that the were absent at the beginning of treatment is exceedingly low," says Vogelstein, leading the team to conclude that the development of drug-resistance is a fait accompli. The time it takes for cancers to recur is determined simply by how long it takes with mutant genes to multiply, he adds.

The research team says that combination therapies are the best chance for longer remissions. "The good news is that there is a limited number of pathways that go awry in cancer, so it should be possible to develop a small number of agents that can be used in a large number of ," says Vogelstein. "However, I hope this research will help stimulate the testing of new drugs as combination therapies much earlier in the drug approval process than the current norm."

More information: DOI: 10.1038/nature11156 , DOI: 10.1038/nature11219

Related Stories

Colon cancer may yield to cellular sugar starvation

Aug 06, 2009

Scientists at the Johns Hopkins Kimmel Cancer Center have discovered how two cancer-promoting genes enhance a tumor's capacity to grow and survive under conditions where normal cells die. The knowledge, they say, may offer ...

Potential treatment target for KRAS-mutated colon cancer found

Feb 16, 2012

Researchers from the Massachusetts General Hospital (MGH) Cancer Center have identified a new potential strategy for treating colon tumors driven by mutations in the KRAS gene, which usually resist both conventional and targeted ...

Gene linked to pancreatic cancer growth, study finds

Jan 31, 2012

A mutant protein found in nearly all pancreatic cancers plays a role not only in the cancer's development but in its continued growth, according to a new study from University of Michigan Comprehensive Cancer ...

Recommended for you

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.