New brain target for appetite control identified

Researchers at Columbia University Medical Center (CUMC) have identified a brain receptor that appears to play a central role in regulating appetite. The findings, published today in the online edition of Cell, could lead to new drugs for preventing or treating obesity.

"We've identified a receptor that is intimately involved in regulating ," said study leader Domenico Accili, MD, professor of Medicine at CUMC. "What is especially encouraging is that this receptor is belongs to a class of receptors that turn out to be good targets for drug development, making it a highly 'druggable' target. In fact, several existing medications already seem to interact with this receptor. So, it's possible that we could have for obesity sooner rather than later."

In their search for new targets for obesity therapies, scientists have focused on the , a tiny that regulates appetite. Numerous studies suggest that the is concentrated in neurons that express a , or brain , called AgRP. But the specific factors that influence AgRP expression are not known.

The CUMC researchers found new clues to by tracing the actions of insulin and leptin. Both hormones are involved in maintaining the body's , and both are known to inhibit AgRP. "Surprisingly, blocking either the insulin or leptin signaling pathway has little effect on appetite," says Dr. Accili. "We hypothesized that both pathways have to be blocked simultaneously in order to influence feeding behavior."

To test their hypothesis, the researchers created a strain of mice whose AgRP neurons lack a protein that is integral to both insulin and leptin signaling. As the researchers hypothesized, removing this protein — Fox01 — had a profound effect on the animals' appetite. "Mice that lack Fox01 ate less and were leaner than normal mice," said lead author Hongxia Ren, PhD, associate research scientist in Medicine. "In addition, the Fox01-deficient mice had better glucose balance and leptin and insulin sensitivity — all signs of a healthier metabolism."

Since Fox01 is a poor drug target, the researchers searched for other ways to inhibit the action of this protein. Using gene-expression profiling, they found a gene that is highly expressed in mice with normal AgRP neurons but is effectively silenced in mice with Fox01-deficient neurons. That gene is Gpr17 (for G-protein coupled receptor 17), which produces a cell-surface receptor called Gpr17.

To confirm that the receptor is involved in appetite control, the researchers injected a Gpr17 activator into normal mice, and their appetite increased. Conversely, when the mice were given a Gpr17 inhibitor, their appetite decreased. Similar injections had no effect on Fox01-deficient mice.

According to Dr. Accili, there are several reasons why Gpr17, which is also found in humans, would be a good target for anti-obesity medications. Since Grp17 is part of the so-called G-protein-coupled receptor family, it is highly druggable. About a third of all existing drugs work through G-protein-coupled receptors. In addition, the receptor is abundant in AgRP neurons but not in other neurons, which should limit unwanted drug side effects.

Related Stories

DREADD-ing your next meal

Mar 01, 2011

In the face of the growing obesity epidemic, much research has focused on the neuronal control of feeding behavior. Agouti-related protein (AgRP) neurons express three proteins that have been implicated in changes in energy ...

Researchers find clue to safer obesity drugs

Nov 25, 2008

(PhysOrg.com) -- Once hailed as a miracle weight-loss drug, Fen-phen was removed from the market more than a decade ago for inducing life-threatening side effects, including heart valve lesions. Scientists at UT Southwestern ...

Recommended for you

Growing a blood vessel in a week

3 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

6 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments