Dog-associated house dust protects against respiratory infection linked to asthma

June 19, 2012

House dust from homes with dogs appears to protect against infection with a common respiratory virus that is associated with the development of asthma in children. Researchers from the University of California, San Francisco, present their findings today at the 2012 General Meeting of the American Society for Microbiology.

"In this study we found that feeding mice house dust from homes that have dogs present protected them against a childhood airway infectious agent, (RSV). RSV infection is common in infants and can manifest as mild to severe respiratory symptoms. Severe infection in infancy is associated with a higher risk of developing childhood asthma," says Kei Fujimura, a researcher on the study.

In the study Fujimura and her colleagues compared three groups of animals: Mice fed house dust from homes with dogs before being infected with RSV, mice infected with RSV without exposure to dust and a control group of mice not infected with RSV.

"Mice fed dust did not exhibit symptoms associated with RSV-mediated airway infection, such as inflammation and mucus production. They also possessed a distinct gastrointestinal bacterial composition compared to animals not fed dust," says Fujimura.

Pet ownership, in particular dogs, has previously been associated with protection against childhood asthma development, says Fujimura. Recently she and her colleagues demonstrated that the collection of (the microbiome) in house dust from homes that possess a cat or dog is compositionally distinct from house dust from homes with no pets.

"This led us to speculate that microbes within dog-associated house dust may colonize the , modulate immune responses and protect the host against the asthmagenic pathogen RSV," says Fujimura. "This study represents the first step towards determining the identity of the which confer protection against this respiratory pathogen."

Identification of the specific species and mechanisms underlying this protective effect represents a crucial step towards understanding the critical role of microbes in defining allergic disease outcomes and could lead to development of microbial-based therapies to protect against RSV and ultimately reduce the risk of development, says Fujimura.

Explore further: Researchers map pathway of infection for a common, potentially life-threatening respiratory virus

Related Stories

Recommended for you

How the tuberculosis vaccine may protect against other diseases

December 6, 2016

The tuberculosis vaccine is well known to help protect against other infectious diseases, as well as cancer, but the exact mechanisms have not been clear. A study published December 6 in Cell Reports now shows that the broad-spectrum ...

Protecting babies from eczema with low-cost Vaseline

December 5, 2016

What if it was possible to prevent your child from getting eczema—a costly, inflammatory skin disorder—just by applying something as inexpensive as petroleum jelly every day for the first six months of his or her life?

How do white blood cells move so fast?

November 22, 2016

If you fall and scrape a knee, it's the job of white blood cells called neutrophils to rush to the site of infection and chase down invading bacteria.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.