Researchers discover the cause of an inherited form of epilepsy

Researchers at McGill University have discovered the cause of an inherited form of epilepsy. The disease, known as double-cortex syndrome, primarily affects females and arises from mutations on a gene located on the X chromosome. Drs. Susanne Bechstedt and Gary Brouhard of the Department of Biology have used a highly advanced microscope to discover how these mutations cause a malformation of the human brain. The results of their study are published in the journal Developmental Cell.

When the brain develops in the uterus, new are born deep within the brain, near the center. These newborn brain cells then crawl out of the so-called "niche" where they were born and migrate outward to the edges of the brain. This outermost layer of the brain is known as the and is the seat of all higher-level thinking and cognition.

In girls with a mutation on their , the outward migration of brain cells unfortunately fails. Instead of making it all the way to the edges of the brain, some of the brain cells pile up on top of one another and form a secondary or "double-cortex." The activity of these abnormally placed brain cells gives rise to seizures and also, in some cases, .

Drs. Bechstedt and Brouhard were able to purify the product of the mutated gene, a protein known as doublecortin, and to watch the protein in action under a microscope. This protein helps brain cells to build a scaffold inside themselves, much like the scaffolds at , built of "poles" called microtubules; these form a "skeleton" for the brain cells, known as the cytoskeleton. Brain cells require this internal skeleton to crawl and to migrate, much as humans need their skeletons to walk and run.

The McGill researchers discovered that, in order for doublecortin proteins to help build this , many doublecortin proteins must work together as a team. They found that disease-causing mutations cause a breakdown in this teamwork. This loss of teamwork is sufficient to prevent the brain cells from constructing a proper "skeleton."

This discovery has implications for treatments for a range of conditions, from other forms of epilepsy to spinal cord injuries. In each case, therapies are increasingly directed at triggering brain cells to extend their skeletons -- for example when re-growing a nerve ending past the site of a wound in the spinal cord. Understanding how brain cells construct their skeletons will open avenues for doctors to target the brain cell skeleton to extend and re-grow when needed.

Related Stories

Transplanted stem cells form proper brain connections

Jan 19, 2010

Transplanted neurons grown from embryonic stem cells can fully integrate into the brains of young animals, according to new research in the Jan. 20 issue of The Journal of Neuroscience. Healthy brains have s ...

Recommended for you

Diet affects men's and women's gut microbes differently

2 hours ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

Researchers explore what happens when heart cells fail

3 hours ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

5 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

User comments