Inhibitors of shuttle molecule show promise in acute leukemia

A novel family of experimental agents that blocks a molecule from shuttling proteins out of the cell nucleus might offer a new treatment for people with acute leukemia, according to a study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The agents, called KPT-SINEs (selective inhibitors of nuclear export), target a transport called CRM1. Using acute myeloid leukemia (AML) cells and an , the researchers showed that these agents inhibited leukemia-cell proliferation, arrested cell division, and induced cell death and differentiation.

In the animal model of AML, KPT-SINEs – described by the researchers as one of the most advanced agents in pre-clinical development – extended survival by 46 percent compared with controls.

KPT-SINEs were particularly effective when the leukemia cells also had mutations in the tumor-suppressor gene NPM1, which are present in about one-third of all adult AML.

The findings were published online in the journal Blood.

"Our study suggests that these agents might be an effective therapy for AML, particularly for patients with NPM1 mutations," says principal investigator Dr. Ramiro Garzon, assistant professor of medicine and a researcher with the OSUCCC – James Molecular Biology and Cancer Genetics Program.

"We hope to start a phase I trial using one of these agents soon and to pursue further preclinical studies using this drug in combination with other current chemotherapies," Garzon says.

CRM1 normally transports out of the to the surrounding cytoplasm. In cells, the molecule carries tumor-suppressor, apoptotic and other protective proteins out of the nucleus, thereby contributing to leukemia development. Karyopharm Therapeutics, Inc., developed KPT-SINEs. This study also showed that these agents:

  • Reduce the amount of CRM1 protein in the nucleus and increase the amount of tumor-suppressor protein such as p53 and NPM1 in AML cells.
  • Strongly down-regulate FLT3 and KIT, oncogenes that are commonly overexpressed in AML.
  • Increase survival in a animal model, with treated mice living an average of 39 days versus 27 days for untreated animals.

Related Stories

Two-faced leukemia?

Dec 12, 2011

One kind of leukemia sometimes masquerades as another, according to a study published online this week in the Journal of Experimental Medicine.

A microRNA prognostic marker identified in acute leukemia

May 14, 2012

A study has identified microRNA-3151 as a new independent prognostic marker in certain patients with acute leukemia. The study involves patients with acute myeloid leukemia and normal-looking chromosomes (CN-AML).

A miR boost enables acute leukemia cells to mature

Apr 03, 2009

A new study by Ohio State University cancer researchers shows that boosting the level of a molecule called miR-29b in acute myeloid leukemia (AML) cells can reverse gene changes that trap the cells in an immature, ...

Recommended for you

DNA alternative to Pap smear sparks medical debate (Update)

15 hours ago

A high-tech screening tool for cervical cancer is facing pushback from more than a dozen American patient groups, who warn that the genetic test could displace a simpler, cheaper and more established mainstay of women's health: ...

User comments