New insight into placental growth and healthy pregnancy

Scientists at the Babraham Institute have gained a new understanding of how the growth of the placenta is regulated before birth, which has important implications for a healthy pregnancy. The research, published today (10 June) in the journal Nature Cell Biology shows that the controlled release of a specific molecule, called miR-675, slows down growth of the placenta before birth.

RNA molecules are best known as the intermediary between the cell's DNA and the making of proteins necessary for cell function. However, there are also many RNA molecules with functions other than encoding proteins. Babraham Institute scientists are involved in researching the role of these noncoding RNAs, including microRNAs (a type of short noncoding RNA molecule) which are important for regulating cell development and function.

The noncoding RNA H19 is one of the most abundant found in but until now its function was unknown. This study, in collaboration with academics in France, the USA and Belgium, is the first to show that a called miR-675 is 'cut out' and released from the longer H19 RNA in the placenta and that this limits placental growth.

Dr Andrew Keniry from the Babraham Institute who is lead author explained, "The function of the H19 noncoding RNA has proven elusive for many years. We have shown that it appears to act as an inert molecule used to store the functional miR-675 until it is required by the cell to slow placental growth. This is a very exciting finding and reveals a new purpose for noncoding RNA. It is also intriguing that the release of miR-675 is controlled by a stress-response protein, suggesting this may be a mechanism the developing embryo can use to regulate its growth in the ."

Professor Wolf Reik, senior author of the paper and a Group Leader at the Babraham Institute, which receives strategic funding from the Biotechnology and Biological Sciences Research Council (BBSRC) said, "It's interesting to see how the growth of the placenta can be regulated in this flexible way before birth. Perhaps there are environmental signals and influences from the mother's diet on the growth of the and hence the healthy baby. It's also fascinating how an RNA that is so abundant in the cell can be a quick-release reservoir of a growth regulating small RNA, and this may be generally important for how cell is regulated by the environment."

Related Stories

'Quiet revolution' may herald new RNA therapeutics

Jan 21, 2007

Scientists at the University of Oxford have identified a surprising way of switching off a gene involved in cell division. The mechanism involves a form of RNA, a chemical found in cell nuclei, whose role was previously unknown, ...

A mystery solved: How genes are selectively silenced

Oct 18, 2010

Cells read only those genes which are needed at a given moment, while the others are chemically labeled and, thus, selectively turned off. Scientists at the German Cancer Research Center have now been the first to discover ...

Common cancer gene sends death order to tiny killer

May 31, 2007

Scientists at Johns Hopkins have discovered one way the p53 gene does what it's known for—stopping the colon cancer cells. Their report will be published in the June 8 issue of Molecular Cell.

Recommended for you

Scientists discover new clues to how weight loss is regulated

29 minutes ago

A hormone seen as a popular target to develop weight-loss drugs works by directly targeting the brain and triggering previously unknown activity in the nervous system, UT Southwestern Medical Center obesity researchers have ...

Team finds key signaling pathway in cause of preeclampsia

2 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

6 hours ago

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments