New invasive imaging technique to monitor brain function

This image shows the implanted electrodes as they are mapped on the brain. Credit: Journal of Visualized Experiments

A new video article in JoVE, the Journal of Visualized Experiments, describes a novel procedure to monitor brain function and aid in functional mapping of patients with diseases such as epilepsy. This procedure illustrates the use of pre-placed electrodes for cortical mapping in the brains of patients who are undergoing surgery to minimize the frequency of seizures. This technique, while invasive, provides real-time analysis of brain function at a much higher resolution than current technologies.

Typically, (fMRI) and (EEG) are used in neuroimaging studies but these techniques suffer from low temporal and spatial resolution. By using electrodes implanted in the brain of an epileptic patient already undergoing treatment, scientists can now image the brain with a much higher spatial resolution, lower signal interference, and a higher temporal resolution than or EEG.

The leading author of the study, Dr. Gerwin Schalk, from the New York State Department of Health and Albany Medical College, states, "Essentially, we have created a new . Our procedure is innovative because it is prospective, meaning, it can image as it occurs. Further, it does not require an expert to derive meaningful information concerning brain function." He also notes that it was crucial for this procedure to be demonstrated in a video format. "The procedure is a very visual process. The ancillary information such as the spatial relationships of different components, the set-up of the hospital room, and the set-up of the equipment itself cannot be represented in a typical print article. The video capacities of JoVE were an excellent vehicle to demonstrate both the general set-up and the specific implementation of the mapping system."

By relying on an epileptic patient's , scientists gain an unprecedented insight into the brain's function. Dr. Schalk's procedure provides a technological advancement that can be applied in many ways, including stroke patient monitoring and rehabilitation, signal mapping and transduction for movement of prosthetic limbs, and enhancement of communication in individuals with paralysis of the vocal musculature. The JoVE video article provides a comprehensive demonstration of the new technique, from mapping the electrical implants to interpreting the tests in real time. JoVE editor Dr. Claire Standen emphasizes, "The new imaging technique demonstrated in this article is very important. There is a definite need for better, more accurate, imaging to monitor brain function. This technique can be applied to a wide range of clinical areas within the Neuroscience field." The article can be found here:

More information: Schalk et. al.: www.jove.com/video/3993/record… nal-cortical-mapping

add to favorites email to friend print save as pdf

Related Stories

Researchers visualize the development of Parkinson's cells

Jan 31, 2012

In the US alone, at least 500,000 people suffer from Parkinson's disease, a neurological disorder that affects a person's ability to control his or her movement. New technology from the University of Bonn in Germany lets ...

Opening the brain to new treatments

Mar 13, 2012

One of the trickiest parts of treating brain conditions is the blood brain barrier, a blockade of cells that prevent both harmful toxins and helpful pharmaceuticals from getting to the body's control center. ...

Research Gives New Perspective On Brain Activities

Sep 08, 2009

(PhysOrg.com) -- University of Victoria (Canada) researcher Phil Zeman has developed a new and less expensive procedure for analyzing EEG (electroencephalogram) data that identifies the location of special brain activities.

New method of infant pain assessment

Dec 21, 2011

Recently, the accuracy of current methods of pain assessment in babies have been called into question. New research from London-area hospitals and the University of Oxford measures brain activity in infants to better understand ...

Recommended for you

Emotional adjustment following traumatic brain injury

9 hours ago

Life after a traumatic brain injury resulting from a car accident, a bad fall or a neurodegenerative disease changes a person forever. But the injury doesn't solely affect the survivor – the lives of their spouse or partner ...

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

TheGhostofOtto1923
4.1 / 5 (14) Jun 26, 2012
Dr. Schalk's procedure provides a technological advancement that can be applied in many ways, including stroke patient monitoring and rehabilitation, signal mapping and transduction for movement of prosthetic limbs, and enhancement of communication in individuals with paralysis of the vocal musculature.
-Not to mention the eventual placement in normal brains for all sorts of beneficial human/machine and human/human interfacing. The direct outsourcing of brain functioning has begun! I would be glad to replace this substandard memory with something 100% reliable, instantly accessible, and unlimited in capacity. For starters.

I started reading vernor vinges 'Rainbows End' about contacts and wearable interfaces. It is already passe.