New method generates cardiac muscle patches from stem cells

June 19, 2012

A cutting-edge method developed at the University of Michigan Center for Arrhythmia Research successfully uses stem cells to create heart cells capable of mimicking the heart's crucial squeezing action.

The cells displayed activity similar to most people's resting heart rate. At 60 beats per minute, the rhythmic electrical impulse transmission of the engineered cells in the U-M study is 10 times faster than in most other reported stem cell studies.

An image of the electrically stimulated is displayed on the cover of the current issue of , a publication of the .

For those suffering from common, but deadly, heart diseases, stem cell biology represents a new medical frontier.

The U-M team of researchers is using stem cells in hopes of helping the 2.5 million people with an arrhythmia, an irregularity in the heart's that can impair the heart's ability to pump blood.

"To date, the majority of studies using induced pluripotent stem cell-derived have focused on single cell functional analysis," says senior author Todd J. Herron, Ph.D., an assistant research professor in the Departments of Internal Medicine and Molecular & Integrative Physiology at the U-M.

"For potential stem cell-based cardiac regeneration therapies for , however, it is critical to develop multi-cellular tissue like constructs that beat as a single unit," says Herron.

Their objective, working with researchers at the University of Oxford, Imperial College and University of Wisconsin, included developing a bioengineering approach, using generated from skin biopsies, which can be used to create large numbers of cardiac muscle cells that can transmit uniform electrical impulses and function as a unit.

Furthermore, the team designed a fluorescent imaging platform using light emitting diode (LED) illumination to measure the electrical activity of the cells.

"Action potential and calcium wave impulse propogation trigger each normal heart beat, so it is imperative to record each parameter in bioengineered human cardiac patches," Herron says.

Authors of the study note that the velocity of the engineered cardiac cells, while faster than previous reports, it is still slower than the velocity observed in the beating adult heart.

Still the velocity is comparable to commonly used rodent cells, and authors suggest human cardiac patches could be used rather than rodent systems for research purposes.

The new method can be readily applied in most cardiac research laboratories and opens the door for the use of cardiac stem cell patches in disease research, testing of new drug treatments and therapies to repair damaged heart muscle.

Explore further: Helping the heart help itself: Research points to new use for stem cells

More information: "Simultaneous Voltage and Calcium Mapping of Genetically Purified Human Induced Pluripotent Stem Cell–Derived Cardiac Myocyte Monolayers," Circulation Research, June 8, 2012; 110: 1556-1.

Related Stories

Hormone reduces risk of heart failure from chemotherapy

August 4, 2011

Recent studies have shown that the heart contains cardiac stem cells that can contribute to regeneration and healing during disease and aging. However, little is known about the molecules and pathways that regulate these ...

Newly discovered heart stem cells make muscle and bone

December 1, 2011

Researchers have identified a new and relatively abundant pool of stem cells in the heart. The findings in the December issue of Cell Stem Cell, a Cell Press publication, show that these heart cells have the capacity for ...

Recommended for you

Heart attack treatment hypothesis 'busted'

July 6, 2015

Researchers have long had reason to hope that blocking the flow of calcium into the mitochondria of heart and brain cells could be one way to prevent damage caused by heart attacks and strokes. But in a study of mice engineered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.