Potential new approach to regenerating skeletal muscle tissue

June 1, 2012

An innovative strategy for regenerating skeletal muscle tissue using cells derived from the amniotic fluid is outlined in new research published by scientists at the UCL Institute of Child Health.

The paper shows that damaged muscle tissues can be treated with cells derived from the fluids which surround the fetus during development, leading to satisfactory regeneration and muscle activity. The treatment resulted in longer survival in mice affected by a muscle variant of spinal muscular atrophy. This is the first time that regeneration of diseased muscle tissue has been obtained using cells derived from .

The research appears in the journal , is authored by Dr Paolo de Coppi (UCL Institute of Child Health and surgeon at Great Ormond Street Hospital) and colleagues in Paris and Padova, and represents an impressive development in the growing field of regenerative medicine.

Muscle derived stem cells are presently considered the best source for . However they cannot be used to treat muscular dystrophies because the stem cells themselves are affected in individuals with these conditions. Due to this challenge, other cell sources have been explored but so far no definitive treatment has been successful.

De Coppi's team has demonstrated that intravenous transplantation of amniotic fluid stem (AFS) cells enhances the muscle strength and improves the survival rate of the affected animals. This is the first study to demonstrate the functional and stable integration of AFS cells into skeletal muscle, highlighting their value as a cell source for the treatment of muscular dystrophies.

However, the research is still at a relatively early stage as the work has only been carried out in animal models.

Dr Coppi said: " is a genetic disease affecting one in 6,000 births. It is currently incurable and in its most severe form children with the condition may not survive long into childhood. Children with a less severe form face the prospect of progressive muscle wasting, loss of mobility and motor function. There is an urgent need for improved treatments.

"We are excited by this potential new approach for regenerating skeletal muscle tissue, but much more research is needed. We now need to perform more in-depth studies with human AFS cells in mouse models to see if it is viable to use cells derived from the amniotic fluid to treat diseases affecting ."

Explore further: Stem cell foundation for muscular dystrophy treatment

More information: onlinelibrary.wiley.com/doi/10.1002/stem.1134/abstract

Related Stories

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.