Researchers find protein deposits linked to Alzheimer's disease behave like prions

June 20, 2012 by Bob Yirka report

(Medical Xpress) -- Researchers from the University of California have found that a peptide that forms deposits in the human brain and is thought to be responsible for the onset of Alzheimer’s disease, behaves in ways that are very similar to the way prions behave when propagating through mammalian neurological tissue. In their paper published in the Proceedings of the National Academy of Sciences describing their research into the ways amyloid-β (Aβ) peptides form deposits, the team found that they propagate across brain tissue in much the say way prions do when causing ailments such as Creutzfeldt-Jakob disease (CJD).

Prions, short for “protein infection” are neither bacterial nor virus and instead are defined as a somewhat mysterious condition, rather than as an infection, despite the fact that diseases that are caused by them are communicable, e.g. mad cow disease. Instead of an infectious agent, cells in the body simply react to the sudden presence of an abnormally folded protein by folding in a likewise manner, propagating across brain or nerve tissue until the victim succumbs. Sadly, scientists don’t yet know how they really do their work and thus can offer no cure for those afflicted.

In this new research, the team introduced the peptide amyloid-β (Aβ) along with a florescent molecule, into just one side of the brain of several mice and then watched what happened over nearly a year’s time. Because of the florescent molecule, the team was able to track the progress of the peptide as it propagated to the other side of the brain, eventually damaging the entire structure. This, the team says, suggests that Aβ is either a prion or something that acts an awful lot like one. There’s one hitch though, diseases caused by prions are generally contagious and thus far there is no reason to believe that Alzheimer’s disease can be passed from person to person.

Whether it is a or isn’t, researchers will likely approach research into Alzheimer’s disease with a different view now that it’s known that the disease starts in one part of the brain and propagates to others, rather than simply cropping up in small bits all over the and progressing to a worse state as time passes, as has been thought to be the case up till now.

Explore further: Alzheimer's prevention role discovered for prions

More information: Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions, PNAS, Published online before print June 18, 2012, doi: 10.1073/pnas.1206555109

Abstract
The aggregation and deposition of amyloid-β (Aβ) peptides are believed to be central events in the pathogenesis of Alzheimer’s disease (AD). Inoculation of brain homogenates containing Aβ aggregates into susceptible transgenic mice accelerated Aβ deposition, suggesting that Aβ aggregates are capable of self-propagation and hence might be prions. Recently, we demonstrated that Aβ deposition can be monitored in live mice using bioluminescence imaging (BLI). Here, we use BLI to probe the ability of Aβ aggregates to self-propagate following inoculation into bigenic mice. We report compelling evidence that Aβ aggregates are prions by demonstrating widespread cerebral β-amyloidosis induced by inoculation of either purified Aβ aggregates derived from brain or aggregates composed of synthetic Aβ. Although synthetic Aβ aggregates were sufficient to induce Aβ deposition in vivo, they exhibited lower specific biological activity compared with brain-derived Aβ aggregates. Our results create an experimental paradigm that should lead to identification of self-propagating Aβ conformations, which could represent novel targets for interrupting the spread of Aβ deposition in AD patients.

Related Stories

Alzheimer's prevention role discovered for prions

July 3, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

Prions show their good side

May 7, 2008

Prions, the infamous agents behind mad cow disease and its human variation, Creutzfeldt-Jakob Disease, also have a helpful side. According to new findings from Gerald Zamponi and colleagues, normally functioning prions prevent ...

Blood test for human form of mad cow disease developed

January 16, 2012

(Medical Xpress) -- Mad cow disease is serious business in the U.K., the human form, known as Creutzfeldt-Jakob after Hans Gerhard Creutzfeldt and Alfons Maria Jakob (CJD), who independently first described its existence ...

Prions in the brain eliminated by homing molecules

April 24, 2012

Toxic prions in the brain can be detected with self-illuminating polymers. The originators, at Linköping University in Sweden, has now shown that the same molecules can also render the prions harmless, and potentially ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.