Study shows role of cellular protein in regulation of binge eating

June 20, 2012

Researchers from Boston University School of Medicine (BUSM) have demonstrated in experimental models that blocking the Sigma-1 receptor, a cellular protein, reduced binge eating and caused binge eaters to eat more slowly. The research, which is published online in Neuropsychopharmacology, was led by Pietro Cottone, PhD, and Valentina Sabino, PhD, both assistant professors in the pharmacology and psychiatry departments at BUSM.

Binge eating disorder, which affects approximately 15 million Americans, is believed to be the eating disorder that most closely resembles . In binge eating subjects, normal regulatory mechanisms that control hunger do not function properly. Binge eaters typically gorge on "junk" foods excessively and compulsively despite knowing the adverse consequences, which are physical, emotional and social in nature. In addition, binge eaters typically experience distress and withdrawal when they abstain from junk food.

The researchers developed an of compulsive binge eating by providing a sugary, chocolate diet only for one hour a day while the control group was given a standard laboratory diet. Within two weeks, the group exposed to the sugary diet exhibited binge eating behavior and ate four times as much as the controls. In addition, the experimental binge eaters exhibited by putting themselves in a potentially risky situation in order to get to the sugary food while the control group avoided the risk.

The researchers then tested whether a drug that blocks the Sigma-1 receptor could reduce binge eating of the sugary diet. The experimental data showed the drug successfully reduced binge eating by 40 percent, caused the binge eaters to eat more slowly and blocked the risky behavior.

The abnormal, risky behavior exhibited by the binge eating experimental group suggested to the researchers that there could be something wrong with how decisions were made. Because evaluation of risks and decision making are functions executed in the prefronto-cortical regions of the brain, the researchers tested whether the abundance of Sigma-1 receptors in those regions was abnormal in the binge eaters. They found that Sigma-1 receptor expression was unusually high in those areas, which could explain why blocking its function could decrease both compulsive and risky behavior.

"These findings suggest that the Sigma-1 receptor may contribute to the neurobiological adaptations that cause compulsive-like eating, opening up a new potential therapeutic treatment target for ," said Cottone, who also co-directs the Laboratory of Addictive Disorders at BUSM with Sabino.

Explore further: Study shows why underrepresented men should be included in binge eating research

Related Stories

Clinical trial teaches binge eaters to toss away cravings

February 10, 2012

Of 190 million obese Americans, approximately 10-15 percent engage in harmful binge eating. During single sittings, these over-eaters consume large servings of high-caloric foods. Sufferers contend with weight gain and depression ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.