Study reports seizure-freedom in 68 percent of juvenile myoclonic epilepsy patients

June 6, 2012

A 25-year follow-up study reveals that 68% of patients with juvenile myoclonic epilepsy (JME) became seizure-free, with nearly 30% no longer needing antiepileptic drug (AED) treatment. Findings published today in Epilepsia, a journal of the International League Against Epilepsy (ILAE), report that the occurrence of generalized tonic-clonic seizures preceded by bilateral myoclonic seizures, and AED polytherapy significantly predicted poor long-term seizure outcome.

Patients with JME experience "jerking" of the arms, shoulders, and sometimes the legs. Previous evidence suggests that JME is a common type of (in up to 11% of people with epilepsy), occurring more frequently in females than in males, and with onset typically in adolescence.. There is still much debate among experts over the long-term outcome of JME, and about which factors predict seizure outcome.

To further investigate JME outcomes and predictive factors, Dr. Felix Schneider and colleagues from the Epilepsy Center at the University of Greifswald in Germany studied data from 12 male and 19 with JME. All participants had a minimum of 25 years follow-up which included review of medical records, and telephone or in-person interviews.

Sixty-eight percent of the 31 JME patients became free of seizures, and 28% discontinued AED treatment due to seizure-freedom. Significant predictors of poor long-term seizure outcome included: occurrence of generalized tonic-clonic seizures (GTCS - formerly known as grand mal seizures) that affect the entire brain and which are preceded by bilateral myoclonic (abnormal movements on both sides of the body and a regimen of AED polytherapy.

Researchers also determined that of GTCS using AED therapy significantly increased the possibility of complete seizure-freedom. However, once AED therapy is discontinued, the occurrence of photoparoxysmal responses (brain discharges in response to brief flashes of light) significantly predicted an increased risk of seizure recurrence.

"Our findings confirm the feasibility of personalized treatment of the individual JME patient," concludes Dr. Schneider. "Life-long AED therapy is not necessarily required in many to maintain seizure freedom. Understanding the predictors for successful long-term seizure outcome will aid clinicians in their treatment options for those with JME."

Explore further: Greater seizure frequency seen in women with epilepsy during anovulatory cycle

More information: "Predictors for Long-Term Seizure Outcome in Juvenile Myoclonic Epilepsy: 25-63 Years Of Follow-Up." Julia Geithner, Felix Schneider, Zhong Wang, Julia Berneiser, Rosemarie Herzer, Christof Kessler and Uwe Runge. Epilepsia; Published Online: June 6, 2012 (DOI: 10.1111/j.1528-1167.2012.03526.x).

Related Stories

Recommended for you

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.