Skin contact breast tumor detection

A simple and cost effective imaging device for breast tumor detection based on a flexible and wearable antenna system has been developed by researchers at the Indiana University – Purdue University Indianapolis.

The team based in the Integrated Nanosystems Development Institute (INDI) describes details in a forthcoming issue of the International Journal of Computer Aided Engineering and Technology and point out that their system holds the promise of much earlier detection than mammography.

INDI's Kody Varahramyan and colleagues, Sudhir Shrestha, Mangilal Agarwal, Azadeh Hemati and Parvin Ghane explain that their system uses a planar microstrip antenna design on a flexible substrate that is optimized for operation in direct contact with the skin. The system avoids the 20% microwave signal loss observed with other systems based on matched coupling medium. Their tests with breast and tumor "phantoms" - model human body systems - shows that the received signal from a tumor is three times the strength from healthy tissue and is well defined relative to background noise level in the image.

The overall goal of the research is to develop a wearable, brassiere-like imaging system that uses non-ionizing radiation to detect cancerous breast tissue. The researchers suggest that the system is cost effective and could detect earlier than other systems, although they add that it would be a complementary system to mammography rather than a replacement for it. Nevertheless for early detection with minimal discomfort to the patients, such a system could become a useful adjunct for cancer detection.

"It has been well recognized that the early detection of breast cancer by regular breast screening increases the survival rate among the breast cancer patients," the team says. Unfortunately, conventional mammography, which utilizes ionizing radiation, has a relatively high rate of false positives and false negatives as well as being uncomfortable. As such, the results for early breast tumors are often obscured by dense breast tissue and ambiguities present near the chest wall, which commonly leads to unnecessary biopsies.

The team is currently working on the software that will allow them to convert the microwave signals from the system into two-dimensional and three-dimensional images of breast tumors.

More information: Int. J. Computer Aided Engineering and Technology, 2012, 4, 499-516

add to favorites email to friend print save as pdf

Related Stories

New breast imaging technology targets hard-to-detect cancers

Dec 03, 2008

Breast-specific gamma imaging (BSGI) is effective in the detection of cancers not found on mammograms or by clinical exam, according to a study presented today at the annual meeting of the Radiological Society of North America ...

New technology offers the next generation of mammography

Oct 01, 2011

Breast cancer is the second most common type of cancer among women in the United States, with approximately 200,000 new diagnoses each year. Early detection is key in the treatment of breast cancer and the biggest advancement ...

Recommended for you

Study pinpoints microRNA tied to colon cancer tumor growth

7 hours ago

Researchers at the University of Minnesota have identified microRNAs that may cause colon polyps from turning cancerous. The finding could help physicians provide more specialized, and earlier, treatment before colon cancer ...

Obesity tied to higher cancer risk for CRC survivors

8 hours ago

(HealthDay)—Colorectal cancer (CRC) patients who are overweight or obese when diagnosed appear to face a slightly higher risk for developing a second weight-related cancer, according to research published ...

User comments