Manipulation of a specific neural circuit buried in complicated brain networks in primates

June 17, 2012

A collaborative research team led by Professor Tadashi ISA from The National Institute for Physiological Sciences, The National Institutes of Natural Sciences and Fukushima Medical University and Kyoto University, developed a "double viral vector transfection technique" which can deliver genes to a specific neural circuit by combining two new kinds of gene transfer vectors. With this method, they found that "indirect pathways", which were suspected to have been left behind when the direct connection from the brain to motor neurons (which control muscles) was established in the course of evolution, actually plays an important role in the highly developed dexterous hand movements. This study was supported by the Strategic Research Program for Brain Sciences by the MEXT of Japan. This research result will be published in Nature (June 17th, advance online publication).

It is said that the higher primates including human beings accomplished explosive evolution by having acquired the ability to move hands skillfully. It has been thought that this ability to move individual fingers is a result of the evolution of the direct connection from the cerebrocortical motor area to of the spinal cord which control the muscles. On the other hand, in lower animals with clumsy hands, such as cats or rats, the cortical motor area is connected to the motor neurons, only through of the spinal cord. Such "indirect pathway"remains in us, primates, without us fully understanding its functions. Is this "phylogenetically old circuit" still in operation? Or maybe suppressed since it is obstructive? The conclusion was not attached to this argument.

The collaborative research team led by Professor Tadashi ISA, Project Assistant Professor Masaharu KINOSHITA from The National Institute for Physiological Sciences, The National Institutes of Natural Sciences and Fukushima Medical University and Kyoto University developed "the double transfection technique"which can deliver genes to a specific by combining two new kinds of vectors.

With this method, they succeeded in the selective and reversible suppression of the propriospinal neurons (spinal interneurons mediating the indirect connection from cortical motor area to spinal motor neurons)

The results revealed that "indirect pathways" play an important role in dexterous hand movements and finally a longtime debate has come to a close.

The key component of this discovery was"the double viral vector transfection technique"in which one vector is retrogradely transported from the terminal zone back to the neuronal cell bodies and the other is transfected at the location of their cell bodies. The expression of the target gene is regulated only in the cells with double transfection by the two vectors. Using this technique, they succeeded in the suppression of the propriospinal neuron selectively and reversibly.

Such an operation was possible in mice in which the inheritable genetic manipulation of germline cells were possible, but impossible in primates until now.

Using this method, further development of gene therapy targeted to a specific neural circuit can be expected.

Professor Tadashi ISA says "this newly developed double viral vector transfection technique can be applied to the gene therapy of the human central nervous system, as we are the same higher primates.

And this is the discovery which reverses the general idea that the spinal cord is only a reflex pathway, but also plays a pivotal role in integrating the complex neural signals which enable dexterous movements."

Related Stories

Anatomical blueprint for motor antagonism identified

October 20, 2011

(Medical Xpress) -- Walking or movement in general, comes so naturally to us, yet it results from a sophisticated interplay between the nervous system and muscles. Little is known about the neuronal blueprint that ensures ...

Recommended for you

Surprising similarity in fly and mouse motion vision

July 29, 2015

At first glance, the eyes of mammals and those of insects do not seem to have much in common. However, a comparison of the neural circuits for detecting motion shows surprising parallels between flies and mice. Scientists ...

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.