Concussions and head impacts may accelerate brain aging

July 31, 2012
Concussions and head impacts may accelerate brain aging
The photos compare images of two brains, one with and without head injury. The red areas indicates electrical activity in response to the task researchers asked study participants to perform, and non-injured brains show more red, thus more electrical activity during the task. Images courtesy of Steven Broglio

Concussions and even lesser head impacts may speed up the brain's natural aging process by causing signaling pathways in the brain to break down more quickly than they would in someone who has never suffered a brain injury or concussion.

Researchers from the University of Michigan School of Kinesiology and the U-M Health System looked at college students with and without a history of concussion and found changes in gait, balance and in the brain's , specifically attention and , said Steven Broglio, assistant professor of and director of the Neurotrauma Research Laboratory.

The declines were present in the group up to six years after injury, though the differences between the study groups were very subtle, and outwardly all of the participants looked and acted the same.

Broglio, who is also affiliated with Michigan NeuroSport, stressed that the studies lay out a hypothesis where concussions and head impacts accelerate the brain's natural aging process.

The study, " and aging: The role of concussive and subconcussive impacts," appears in the July issue of journal Exercise and Sport Sciences Reviews.

"The last thing we want is for people to panic. Just because you've had a concussion does not mean your brain will age more quickly or you'll get Alzheimer's," Broglio said. "We are only proposing how being hit in the head may lead to these other conditions, but we don't know how it all goes together just yet."

Broglio stressed that other factors, such as , smoking, , , family history and whether or not you "exercise" your brain also impact the brain's aging process. Concussion may only be one small factor.

To begin to understand how concussions might impact and its signaling pathways, researchers asked the participants to perform certain tasks in front of a computer, and took images of their brains. The brains of the nonconcussed group showed a greater area of electrical activation than the participants with a history of brain injury.

The signaling pathways in our brains are analogous to a five-lane highway. On a new highway, traffic runs smoothly and quickly as all lanes are in top shape. However, during normal aging, the asphalt deteriorates and lanes might become bumpy or even unusable. Traffic slows.

Similarly, our brains start with all pathways clear to transfer electrical signals rapidly. As we age, the brain's pathways break down and can't transfer the information as quickly. Concussive and other impacts to the head may result in a 'pothole' on the brain's highway, causing varying degrees of damage and speeding the pathway's natural deterioration.

"What we don't know is if you had a single concussion in high school, does that mean you will get dementia at age 50?" Broglio said. "Clinically, we don't see that. What we think is it will be a dose response.

"So, if you played soccer and sustained some head impacts and maybe one concussion, then you may have a little risk. If you went on and played in college and took more head balls and sustained two more concussions, you're probably at a little bigger risk. Then if you play professionally for a few years, and take more hits to the head, you increase the risk even more. We believe it's a cumulative effect."

Explore further: Breakthrough: Real-time data recorded on football player captures impact that caused broken neck

More information: In the next phase of study, researchers will look at people in their 20s, 40s and 60s who did and did not sustain concussions during high school sports. They hope to learn if there is an increasing effect of concussion as the study subjects age. If interested in participating in the study, email neurotraumalab.umich@gmail.com.

Related Stories

Recommended for you

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Neural basis of multitasking identified

September 1, 2015

What makes someone better at switching between different tasks? Looking for the mechanisms behind cognitive flexibility, researchers at the University of Pennsylvania and Germany's Central Institute of Mental Health in Mannheim ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.