Concussions and head impacts may accelerate brain aging

July 31, 2012
Concussions and head impacts may accelerate brain aging
The photos compare images of two brains, one with and without head injury. The red areas indicates electrical activity in response to the task researchers asked study participants to perform, and non-injured brains show more red, thus more electrical activity during the task. Images courtesy of Steven Broglio

Concussions and even lesser head impacts may speed up the brain's natural aging process by causing signaling pathways in the brain to break down more quickly than they would in someone who has never suffered a brain injury or concussion.

Researchers from the University of Michigan School of Kinesiology and the U-M Health System looked at college students with and without a history of concussion and found changes in gait, balance and in the brain's , specifically attention and , said Steven Broglio, assistant professor of and director of the Neurotrauma Research Laboratory.

The declines were present in the group up to six years after injury, though the differences between the study groups were very subtle, and outwardly all of the participants looked and acted the same.

Broglio, who is also affiliated with Michigan NeuroSport, stressed that the studies lay out a hypothesis where concussions and head impacts accelerate the brain's natural aging process.

The study, " and aging: The role of concussive and subconcussive impacts," appears in the July issue of journal Exercise and Sport Sciences Reviews.

"The last thing we want is for people to panic. Just because you've had a concussion does not mean your brain will age more quickly or you'll get Alzheimer's," Broglio said. "We are only proposing how being hit in the head may lead to these other conditions, but we don't know how it all goes together just yet."

Broglio stressed that other factors, such as , smoking, , , family history and whether or not you "exercise" your brain also impact the brain's aging process. Concussion may only be one small factor.

To begin to understand how concussions might impact and its signaling pathways, researchers asked the participants to perform certain tasks in front of a computer, and took images of their brains. The brains of the nonconcussed group showed a greater area of electrical activation than the participants with a history of brain injury.

The signaling pathways in our brains are analogous to a five-lane highway. On a new highway, traffic runs smoothly and quickly as all lanes are in top shape. However, during normal aging, the asphalt deteriorates and lanes might become bumpy or even unusable. Traffic slows.

Similarly, our brains start with all pathways clear to transfer electrical signals rapidly. As we age, the brain's pathways break down and can't transfer the information as quickly. Concussive and other impacts to the head may result in a 'pothole' on the brain's highway, causing varying degrees of damage and speeding the pathway's natural deterioration.

"What we don't know is if you had a single concussion in high school, does that mean you will get dementia at age 50?" Broglio said. "Clinically, we don't see that. What we think is it will be a dose response.

"So, if you played soccer and sustained some head impacts and maybe one concussion, then you may have a little risk. If you went on and played in college and took more head balls and sustained two more concussions, you're probably at a little bigger risk. Then if you play professionally for a few years, and take more hits to the head, you increase the risk even more. We believe it's a cumulative effect."

Explore further: Breakthrough: Real-time data recorded on football player captures impact that caused broken neck

More information: In the next phase of study, researchers will look at people in their 20s, 40s and 60s who did and did not sustain concussions during high school sports. They hope to learn if there is an increasing effect of concussion as the study subjects age. If interested in participating in the study, email

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.