A further step towards preventing diabetes

Having identified the important role in controlling insulin secretion played by the protein Cx36, a team of scientists at the University of Geneva have perfected an innovative method which enables testing the effectiveness of thousands of molecules potentially usable in the fight against diabetes. This results of this research have already been published in the scientific review PLoS ONE.

produce insulin, responsible for controlling and thus essential for our survival. Among the numerous factors that affect the workings of these cells, a protein called Cx36 was identified a few months ago by a research team at the UNIGE. The scientists there had demonstrated that in , suitably modified so as not to produce any Cx36, synchronization of the beta cells ceased and went out of control. This de-synchronization of insulin secretion is the first measurable sign in people suspected of developing type 2 diabetes. Armed with this knowledge, the research team have set about finding which act directly on Cx36 with the objective of developing a novel to fighting diabetes.

Paolo Meda, Professor of and Metabolism in the University of Geneva's Faculty of Medicine, has set his team a real challenge - study the protein Cx36, present in minute quantities and almost impossible to detect using traditional techniques, and which has a half-life of around three hours!

Over one thousand drugs tested

Sabine Bavamian and Helena Pontes, researchers in Professor Meda's laboratory, set to work on developing a non-invasive system for understanding how Cx36 works. This project has been partly financed by the Juvenile Diabetes Research Foundation (USA) and the Swiss National Science Foundation and is using equipment in the Bio-Imaging department of UNIGE's Faculty of Medicine. The two scientists have been able to develop a new model using living cells which produce insulin and Cx36 in culture in order to be able rapidly to test a large number of potentially interesting molecules. With this novel approach, they have been able to analyse some 1040 molecules, enabling them to identify those that stimulate insulin production and those that inhibit it. Such discoveries should enable the roll out of new pharmacological treatment strategies for .

And what if animal venoms are not poisons after all?

Although there is now a large number of drugs that are prescribed for diabetics the world over to help alleviate de-synchronization, the majority of them have unfortunate side effects. And thus Professor Meda has decided to use the innovative technique developed by his team to test the effect on Cx36 of very different molecules, produced from animal venom. Such molecules should not give rise to the same type of problem posed by the traditional drugs used currently. The screening, or selection, of the venom should enable carrying out the necessary validation tests, initially in vitro, and then in vivo. «We have some 3 to 5 years work ahead of us, but we have very serious hopes of discovering molecules which act exclusively on Cx36, unlike all the currently identified molecules, with a view to limiting side-effects», explains Professor Meda. In the fight against diabetes, scientists are exploring numerous avenues, some of which are rather surprising.

add to favorites email to friend print save as pdf

Related Stories

Compounds that trigger beta cell replication identified

Feb 25, 2009

Researchers at the Genomics Institute of the Novartis Research Foundation (GNF) have identified a set of compounds that can trigger the proliferation of insulin-producing cells in the pancreas, using sophisticated high-throughput ...

Fat cells send message that aids insulin secretion

Nov 06, 2007

The body's fat cells help the pancreas do its job of secreting insulin, according to research at Washington University School of Medicine in St. Louis. This previously unrecognized process ultimately could lead to new methods ...

A body temperature sensor, TRPM2, promotes insulin secretion

Jan 04, 2011

The research group led by professor Makoto Tominaga and Dr. Kunitoshi Uchida, National institute for Physiological Sciences (NIPS), Japan, found TRPM2 ion channel in pancreatic beta-cells is important for insulin secretion ...

Recommended for you

Study explores effects of metformin in obese children

Dec 18, 2014

(HealthDay)—For obese hyperinsulinemic children, metformin seems to decrease perceived hunger and increase perceived fullness, according to a study published online Dec. 8 in Diabetes, Obesity and Metabolism.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.