Gene therapy treatment extends lives of mice with fatal disease

A team of University of Missouri researchers has found that introducing a missing gene into the central nervous system could help extend the lives of patients with Spinal Muscular Atrophy (SMA) – the leading genetic cause of infantile death in the world.

SMA is a rare genetic disease that is inherited by one in 6,000 children who often die young because there is no cure. Children who inherit SMA are missing a gene that produces a protein which directs nerves in the spine to give commands to muscles.

The MU team, led by Christian Lorson, professor in the Department of Veterinary Pathobiology and the Department of Molecular Microbiology and Immunology, introduced the missing gene into born with SMA through two different methods: intravenously and directly into the mice's central nervous systems. While both methods were effective in extending the lives of the mice, Lorson found that introducing the missing gene directly into the central nervous system extended the lives of the mice longer.

"Typically, mice born with SMA only live five or six days, but by introducing the missing SMN gene into the mice's central nervous systems, we were able to extend their lives 10-25 days longer than SMA mice who go untreated," said Lorson, who works in the MU Bond Life Sciences Center and the College of Veterinary Medicine. "While this system is still not perfect, what our study did show is that the direct administration of the missing gene into the central provides some degree of rescue and a profound extension of survival."

There are several different types of SMA that appear in humans, depending on the age that symptoms begin to appear. Lorson believes that introducing the missing gene through the is a way to potentially treat humans regardless of what SMA type they have.

"This is a treatment method that is very close to being a reality for human patients," Lorson said. "Clinical trials of SMA treatment using gene therapy are likely to begin in next 12-18 months, barring any unforeseen problems."

More information: The study, "Direct central nervous system delivery provides enhanced protection following vector mediated gene replacement in a severe model of Spinal Muscular Atrophy", was published in Biochemical and Biophysical Research Communications.

Related Stories

Spinal muscular atrophy may also affect the heart

Aug 11, 2010

Along with skeletal muscles, it may be important to monitor heart function in patients with spinal muscular atrophy (SMA). These are the findings from a study conducted by Nationwide Children's Hospital and published online ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments