Speeding up Huntington's research

July 9, 2012
Speeding up Huntington's research

(Medical Xpress) -- Human brain cells showing aspects of Huntington’s Disease have been developed, opening up new research pathways for treating the fatal disorder.

An international consortium, including scientists from the School of Biosciences, has taken cells from Huntington’s Disease patients and generated human brain cells that develop aspects of the disease in the laboratory. The cells and the new technology will speed up research into understanding the disease and also accelerate drug discovery programs aimed at treating this terminal, genetic disorder.

is an aggressive, neurodegenerative disorder which causes loss of co-ordination, psychiatric problems, dementia and death. Scientists have known the genetic cause of this disease for more than 20 years but research has been hampered by the lack of human brain cells with which to study the disease and screen for effective drugs.

The new breakthrough involves taking skin cells from patients with Huntington's disease. The scientific team reprogrammed these cells into stem cells which were then turned into the brain cells affected by the disorder. The brain cells demonstrate characteristics of the disease and will allow the consortium to investigate the mechanisms that cause the brain cells to die.

Dr. Nicholas Allen, one of the lead investigators at the School of Biosciences, said: "This breakthrough allows us to generate brain cells with many of the hallmarks of this disease, within just a few weeks. This means that we can study both the normal physiology of these , and the pathological processes that lead to their death."

The other Cardiff lead, Professor Paul Kemp, said: "Huntington’s Disease normally takes years to manifest in the . Now we have a fast and reproducible model of this disease, offering fresh hope for the discovery of new therapies."

The corresponding author of the paper, Professor Clive Svendsen, a UK scientist and now director of the Cedars-Sinai Regenerative Medicine Institute in the USA, said "This Huntington's 'disease in a dish' will enable us for the first time to test therapies on human Huntington's disease neurons. In addition to increasing our understanding of this disorder and offering a new pathway to identifying treatments, this study is remarkable because of the extensive interactions between a large group of scientists focused on developing this model. It's a new way of doing trailblazing science."

Director of the School of Biosciences, Professor Ole Petersen said: "This is an extremely important development and I am delighted to see colleagues from the School of Biosciences playing their part in this distinguished international team. I look forward to seeing future stages, when this new technique is put to work modeling the diseases and testing potential treatments."

Explore further: Scientists correct Huntington's disease mutation in induced pluripotent stem cells

More information: www.cell.com/cell-stem-cell/abstract/S1934-5909(12)00338-4

Related Stories

Recommended for you

Effects of maternal smoking continue long after birth

May 30, 2016

Early exposure to nicotine can trigger widespread genetic changes that affect formation of connections between brain cells long after birth, a new Yale-led study has found. The finding helps explains why maternal smoking ...

Fish courtship pheromone uses the brain's smell pathway

May 30, 2016

Research at the RIKEN Brain Science Institute in Japan has revealed that a molecule involved in fish reproduction activates the brain via the nose. The pheromone is released by female zebrafish and sensed by smell receptors ...

Study identifies how brain connects memories across time

May 23, 2016

Using a miniature microscope that opens a window into the brain, UCLA neuroscientists have identified in mice how the brain links different memories over time. While aging weakens these connections, the team devised a way ...

Neuroscientists illuminate role of autism-linked gene

May 25, 2016

A new study from MIT neuroscientists reveals that a gene mutation associated with autism plays a critical role in the formation and maturation of synapses—the connections that allow neurons to communicate with each other.

Teen brains facilitate recovery from traumatic memories

May 25, 2016

Unique connections in the adolescent brain make it possible to easily diminish fear memories and avoid anxiety later in life, according to a new study by Weill Cornell Medicine researchers. The findings may have important ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.