Protein-based coating could help rehabilitate long-term brain function

Protein-based coating could help rehabilitate long-term brain function

Brain-computer interfaces are at the cutting edge for treatment of neurological and psychological disorder, including Parkinson's, epilepsy, and depression. Among the most promising advance is deep brain stimulation (DBS) — a method in which a silicon chip implanted under the skin ejects high frequency currents that are transferred to the brain through implanted electrodes that transmit and receive the signals. These technologies require a seamless interaction between the brain and the hardware.

But there's a catch. Identified as foreign bodies by the immune system, the brain attacks the electrodes and forms a barrier to the , making it impossible for the electrodes to communicate with brain activity. So while the initial implantation can diminish symptoms, after a few short years or even months, the efficacy of this therapy begins to wane.

Now Aryeh Taub of Tel Aviv University's School of Psychological Sciences, along with Prof. Matti Mintz, Roni Hogri and Ari Magal of TAU's School of Psychological Sciences and Prof. Yosi Shacham-Diamand of TAU's School of Electrical Engineering, has developed a bioactive coating which not only "camouflages" the electrodes in the brain tissue, but actively suppresses the brain's immune response. By using a protein called an "interleukin (IL)-1 receptor antagonist" to coat the electrodes, the multi-disciplinary team of researchers has found a potential resolution to turn a method for short-term relief into a long-term solution. This development was reported in the Journal of Biomedical Materials Research.

Limiting the immune response

To overcome the creation of the barrier between the tissue and the electrode, the researchers sought to develop a method for placing the electrode in the brain tissue while hiding the electrode from the brain's immune defenses. Previous research groups have coated the electrodes with various proteins, says Taub, but the TAU team decided to take a different approach by using a protein that is active within the brain itself, thereby suppressing the immune reaction against the electrodes.

In the brain, the IL-1 receptor antagonist is crucial for maintaining physical stability by localizing brain damage, Taub explains. For example, if a person is hit on the head, this protein works to create scarring in specific areas instead of allowing global brain scarring. In other words, it stops the immune system from overreacting. The team's coating, the first to be developed from this particular protein, not only integrates the electrodes into the brain tissue, but allows them to contribute to normal brain functioning.

In pre-clinical studies with animal models, the researchers found that their coated electrodes perform better than both non-coated and "naïve protein"-coated electrodes that had previously been examined. Measuring the number of damaged cells at the site of implantation, researchers found no apparent difference between the site of electrode implantation and healthy brain tissue elsewhere, Taub says. In addition, evidence suggests that the coated electrodes will be able to function for long periods of time, providing a more stable and long-term treatment option.

Restoring brain function

Approximately 30,000 people worldwide are currently using (DBS) to treat neurological or psychological conditions. And DBS is only the beginning. Taub believes that, in the future, an interface with the ability to restore behavioral or motor function lost due to tissue damage is achievable — especially with the help of their new electrode coating.

"We duplicate the function of brain tissue onto a silicon chip and transfer it back to the brain," Taub says, explaining that the will pick up brain waves and transfer these directly to the chip. "The chip then does the computation that would have been done in the damaged tissue, and feeds the information back into the — prompting functions that would have otherwise gotten lost."

Related Stories

A pacemaker for your brain

Jun 28, 2010

By stimulating certain areas of the brain, scientists can alleviate the effects of disorders such as depression or Parkinson's disease. That's the good news. But because controlling that stimulation currently lacks precision, ...

Brain stimulation improves dexterity

Oct 27, 2008

Applying electrical stimulation to the scalp and the underlying motor regions of the brain could make you more skilled at delicate tasks. Research published today in the open access journal BMC Neuroscience shows that a non- ...

Researchers Develop Wireless Method of Brain Stimulation

Mar 16, 2009

(PhysOrg.com) -- A new, wireless method of brain stimulation has the potential to activate specific regions of the brain or restore function to damaged or cut nerves, according to a study by Case Western Reserve ...

Recommended for you

Myelin vital for learning new practical skills

Oct 16, 2014

New evidence of myelin's essential role in learning and retaining new practical skills, such as playing a musical instrument, has been uncovered by UCL research. Myelin is a fatty substance that insulates ...

Reminiscing can help, not hinder, some mind-bending tasks

Oct 16, 2014

To solve a mental puzzle, the brain's executive control network for externally focused, goal-oriented thinking must activate, while the network for internally directed thinking like daydreaming must be turned down to avoid ...

Bio-X scientists develop decoy drug to aid ailing brain

Oct 16, 2014

A team of Stanford Bio-X scientists has restored the ability of adult mice to form new connections in the brain. If the finding works in people, it has the potential to help adults recover from stroke and ...

User comments