Rapamycin effective in mouse model of inherited heart disease and muscular dystrophies

Rapamycin, an immunosuppressant drug used in a variety of disease indications and under study in aging research labs around the world, improved function and extended survival in mice suffering from a genetic mutation which leads to dilated cardiomyopathy (DCM) and rare muscular dystrophies in humans. There are currently no effective treatment for the diseases, which include Emery-Dreifuss Muscular Dystrophy and Limb-Girdle Muscular Dystrophy. The familial form of DCM often leads to sudden heart failure and death when those affected reach their 40's and 50's.

In research published in the July 25, 2012 online edition of Science Translational Medicine, scientists from the Buck Institute and other organizations focused on mutations in the gene LMNA, which produces A-type lamins. Mutations in this gene are associated with at least 13 diseases, with DCM among the most common. DCM accounts for 60 percent of all cases. LMNA mutations may account for up to one-third of patients that are diagnosed as having DCM and conduction disease. DCM causes a thinning of the and loss of .

The study showed that deletion of the LMNA gene led to ramped up activity in the molecular pathway mTOR (mammalian target of rapamycin) and that treatment with rapamycin turns down the abnormal signaling. Senior author Brian K. Kennedy, PhD, President and CEO of the Buck Institute for Research on Aging, says treatment with rapamycin extended mouse lifespan by 60 percent in a relatively rapid onset model of disease.

"What's particularly exciting is that this work offers a therapeutic possibility where there has been none," said Kennedy. "This study, along with others, suggests that clinical trials of rapamycin and its derivatives be initiated for human patients suffering from this form of DCM."

Rapamycin has been shown to extend healthspan in normal mice. It and the mTOR pathway are being intensively studied in aging research laboratories around the world. Kennedy, who came to the Buck Institute from the University of Washington where much of this work was done, said the study first focused on rapamycin in a mouse model of Hutchinson-Gilford Progeria Syndrome, a premature aging disorder that is also based on a mutation in lamin-A. "We found to our surprise that rapamycin is beneficial for DCM instead," he said. "As we investigate and understand the cellular pathways that get disrupted or altered with aging, we will likely be putting our hands on common pathways that become disregulated in various disease states," said Kennedy. "This started out as a study about aging, and it's pointed us toward a specific disease indication, where we might be able to generate a new therapeutic. I am hoping this is the first of many times that this happens."

add to favorites email to friend print save as pdf

Related Stories

Novel gene found for dilated cardiomyopathy

Jul 13, 2009

Researchers in the Heart Institute at Cincinnati Children's Hospital Medical Center have discovered a novel gene responsible for heart muscle disease and chronic heart failure in some children and adults with dilated cardiomyopathy ...

Risk gene for severe heart disease discovered

Oct 21, 2010

Research led by Klaus Stark and Christian Hengstenberg of the University of Regensburg identified a common variant of the cardiovascular heat shock protein gene, HSPB7, which was found to increase risk for dilated cardiomyopathy ...

Genetic mutation implicated in 'broken' heart

Feb 15, 2012

For decades, researchers have sought a genetic explanation for idiopathic dilated cardiomyopathy (DCM), a weakening and enlargement of the heart that puts an estimated 1.6 million Americans at risk of heart failure each year. ...

New study explains duality of longevity drug rapamycin

Mar 29, 2012

A Penn- and MIT-led team explained how rapamycin, a drug that extends mouse lifespan, also causes insulin resistance. The researchers showed in an animal model that they could, in principle, separate the effects, which depend ...

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.