Study results: Adult stem cells from bone marrow

Researchers from the University of Maryland School of Maryland report promising results from using adult stem cells from bone marrow in mice to help create tissue cells of other organs, such as the heart, brain and pancreas - a scientific step they hope may lead to potential new ways to replace cells lost in diseases such as diabetes, Parkinson's or Alzheimer's. The research in collaboration with the University of Paris Descartes is published online in the July 2, 2012 edition of Comptes Rendus Biologies, a publication of the French Academy of Sciences.

"Finding stem cells capable of restoring function to different damaged organs would be the of ," says lead author David Trisler, PhD, assistant professor of neurology at the University of Maryland School of Medicine.

He adds, "This research takes us another step in that process by identifying the potential of these adult , or a subset of them known as CD34+ bone marrow cells, to be 'multipotent,' meaning they could transform and function as the normal cells in several different organs."

University of Maryland researchers previously developed a special culturing system to collect a select sample of these adult stem cells in bone marrow, which normally makes red and and . In this project, the team followed a widely recognized study model, used to prove the multipotency of embryonic stem cells, to prove that these bone marrow stem cells could make more than just blood cells. The investigators also found that the CD34+ cells had a limited lifespan and did not produce teratomas, tumors that sometimes form with the use of embryonic stem cells and cultivated from other methods that require some .

"When taken at an early stage, we found that the CD34+ cells exhibited similar multipotent capabilities as , which have been shown to be the most flexible and versatile. Because these CD34+ cells already exist in normal bone marrow, they offer a vast source for potential cell replacement therapy, particularly because they come from a person's own body, eliminating the need to suppress the immune system, which is sometimes required when using adults stem cells derived from other sources," explains Paul Fishman, MD, PhD, professor of neurology at the University of Maryland School of Medicine.

The researchers say that proving the potential of these adult bone marrow stem cells opens new possibilities for scientific exploration, but that more research will be needed to see how this science can be translated to humans.

"The results of this international collaboration show the important role that University of Maryland School of Medicine researchers play in advancing scientific understanding, investigating new avenues for the development of potentially life-changing treatments," says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs at the University of Maryland and the John Z. and Akiko K. Bowers Distinguished Professor and dean of the University of Maryland School of Medicine.

This project builds on three decades of collaboration between the American and French researchers, particularly Dr. Bernard Pessac of the University of Paris Descartes and Dr. Trisler at the University of Maryland. Researchers from the Multiple Sclerosis Center of Excellence at the Baltimore Veterans Administration Medical Center also contributed to the study.

More information: dx.doi.org/10.1016/j.crvi.2012.05.005

add to favorites email to friend print save as pdf

Related Stories

Molecule dictates how stem cells travel

Jan 14, 2006

U.S. researchers have defined a molecule that dictates how blood stem cells travel to the bone marrow and establish blood and immune cell production.

Adipose tissue produces cells involved in immune response

Nov 26, 2010

French researchers from CNRS and the Universite Paul Sabatier have demonstrated the existence, in adipose tissue, of stem cells similar to those found in bone marrow. These cells are capable of differentiating into mast cells, ...

Stem cell breakthrough: Bone marrow cells are the answer

Jan 28, 2010

Using cells from mice, scientists from Iowa and Iran have discovered a new strategy for making embryonic stem cell transplants less likely to be rejected by a recipient's immune system. This strategy, described in a new research ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments