Researchers moving towards ending threat of West Nile virus

Mosquitoes are buzzing once again, and with that comes the threat of West Nile virus. Tom Hobman, a researcher with the Li Ka Shing Institute of Virology in the Faculty of Medicine & Dentistry, is making every effort to put an end to this potentially serious infection.

infections often result in flu-like symptoms that aren't life-threatening, and some in cases, infected people show no symptoms at all. But a significant percentage of patients develop serious neurological disease that includes inflammation in the brain, paralysis and seizures. In his latest research, published in the journal PLoS One, Hobman has discovered how the breaks through the normally rock-solid blood-brain barrier to the central nervous system. The virus breaks down two vital proteins that make up what is called the tight junction, a part of the blood-brain barrier.

"What we found in infected cells is there's less of two proteins called claudin and JAM (junctional adhesion molecule)," said Hobman. "The virus replication is causing degradation of two very important molecules that form these intra-cellular barriers. We can quantitate this and we've looked in at least three different cell types and we see the same thing happening."

Now Hobman and his graduate student Zaikun Xu would like to know how this is happening. Cells have built in pathways that regulate tight junctions, in part by controlling the levels of both JAM and claudin. Hobman hypothesizes that West Nile virus infection causes these pathways to go awry – resulting in accelerated breakdown of claudin and JAM.

"Once we understand how West Nile virus affects the pathways that control the tight junctions of the blood-brain barrier, it may be possible to design drugs that prevent infection of the brain. I expect this will also be the case for related viruses that infect the central nervous system."

This builds on work his lab published last year showing that when they inhibited the expression of a specific cellular protein, infectivity of the West Nile virus went down by more than 100 times.

add to favorites email to friend print save as pdf

Related Stories

Patients recover from West Nile virus after one year

Aug 19, 2008

(PhysOrg.com) -- People infected with West Nile virus seem to return to normal within one year of experiencing symptoms, a new McMaster study has found. The study, published today in the Annals of Internal Medicine, is the ...

Study to examine new treatment for West Nile virus

Aug 18, 2010

Neurological and infectious disease experts at Rush University Medical Center are testing a new drug therapy for the treatment of individuals with West Nile fever or suspected central nervous system infection due to the West ...

Good long-term prognosis after West Nile virus infection

Aug 18, 2008

The long-term prognosis of patients infected with West Nile virus is good, according to a new study appearing in the August 19, 2008, issue of Annals of Internal Medicine, the American College of Physicians' flagship journa ...

New and improved test for West Nile virus in horses

Aug 20, 2008

A new test for West Nile virus in horses that could be modified for use on humans and wildlife may help track the spread of the disease, according to an article in the September issue of the Journal of Medical Microbiology.

Recommended for you

The impact of bacteria in our guts

19 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

20 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

21 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments